請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74424完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政達 | |
| dc.contributor.author | Qing Deng | en |
| dc.contributor.author | 鄧擎 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:35:02Z | - |
| dc.date.available | 2019-12-31 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-11 | |
| dc.identifier.citation | S. M. Sze. Physics of Semiconductor Devices, Third Edition. Wiley-Interscience, 2007.
K. S. Novoselov, A. K. Gelm. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197-200, 2005. Seungchui Kim, Jisoon Ihm. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett, 100, 176802, 2008. Young-Woo. Son, Marvin L. Cohen, Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett, 97, 216803, 2006. Melinda Y. Han, Barbaros O. Zyilmaz, Yuanbo Zhang, Philip Kim. Energy-gap engineering of graphene nanoribbons. Phys. Rev. Lett, 98, 206805, 2007. Kenley Pelzer. Strong correlation in acene sheets from active-space variational twoelectron reduced density matrix method: Effect of symmetry and size. J. Phys. Chem, 115(22), 5632-5640, 2011. Jeng-Da Chai. Density functional theory with fractional orbital occupations. J. Chem. Phys, 136, 154104, 2012. Jeng-Da Chai. Thermally-assisted-occupation density functional theory with generalized-gradient approximation. J. Chem. Phys, 140, 18A521, 2014. Chih-Ying Lin, Jeng-Da Chai. Self-consistent determination of the fictitious temperature in thermally-assisted-occupation density functional theory. RSC Adv, 80, 50496-50507, 2017. Chia-Nan Yeh, Jeng-Da Chai. Role of Kekule and non-Kekule structures in the radical character of alternant polycyclic aromatic hydrocarbon: A TAO-DFT study. Scientific Report, 6, 30562, 2016. Chia-Nan Yeh, Can Wu, Haibin Su, Jeng-Da Chai. Electronic properties of the coronene series from thermally-assisted-occupation density functional theory. RSC Adv, 60, 34350-34358, 2018. Niko Pavlicek, Anish Mistry. Synthesis and characterization of triangulene. Nature nanotechology, 12, 308-311, 2017. Anita Das, Thomas Muller, Felix Plasser, Hans Lischka. Polyradical character of triangulene non-Kekule structure, zethrenes, p-quinodimenthan-linked bisphenalenyl and the Clar goblet in comparison: An extended multi-reference study. J. Phys. Chem, 120(9), 1625-1636, 2016. Y. Morita. Synthetic organic spin chemistry for structurally well-defined openshell graphene fragment. Nature Chemistry, 3, 197-204, 2011. J. Fermandez Rossier. Magnetism in Graphene Nanoislands. Phys. Rev. Lett, 99, 177204, 2007. Michael R. Philport, Yoshiyuki Kawazoe. Bonding and Magnetism in High Symmetry Nano-Sized Graphene Molecules, Materials Transactions, 49(11), 2448-2456, 2008. Elliot H. Lieb. Two theorems on the Hubbard model. Phys. Rev. Lett, 62, 1201-1204, 1989. A. A. Ovchinnikov. Theoret. Chim. Acta, 47, 297-304, 1978. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74424 | - |
| dc.description.abstract | 此論文中,我使用密度泛函理論研究三角稀(triangulene)及其衍伸系統(ntriangulene),依據結果顯示,若使用傳統密度泛函理論計算延伸三角稀,系統基態時將具備高自旋量子數(spin number) , 然而由於自旋汙染(spincontamination),傳統泛函理論將無法良好取得低自旋下的能量,因此,我另外使用熱輔助密度泛函理論(Thermally-Assisted-Occupation densityfunctional theory)對延伸三角稀做計算,根據熱輔助泛函理論的結果,所有的延伸三角稀都得基態都為單重態,且計算中皆沒有自旋汙染的發生,另外,隨著三角稀系統逐漸放大(n),系統的孤對電子數也會逐步增加(n-1)。
依據延伸三角稀(n=21)的能量狀態密度(Density of states)顯示,此系統具有一堆表面態(Surface state)集中在費米能階(Fermi-level)附近,這些表面態的軌道佔據數(Orbital occupied number)皆為半滿,另外,隨著延伸三角稀的尺寸放大,系統的能隙將逐步縮小,除了基態性質,延伸三角稀的單重態和三重態差距,游離能,電子親和力,基本能隙也在論文中透過熱輔助密度泛函理論計算得到,其中,對於所有的延伸三角稀而言,其單重態和三重態差距皆非常小,再次驗證了簡併態確實在延伸三角稀中存在,也說明了熱輔助密度泛函理論在此系統的重要性。 | zh_TW |
| dc.description.abstract | The electronic properties of n-triangulene have been investigated using Kohn-Sham density functional theory (KS-DFT) and Thermally-Assisted-Occupation density functional theory (TAO-DFT) which is believed to have a correct treatment of strong correlation systems. The results in this study suggest that n-triangulene belong to repulsive Hubbard model and the ground state spin number will follow Lieb’s theorem in KS-DFT calculation. However, the results also indicate severe spin contamination in KS-DFT calculation which will cause inaccuracy about 10 kcal/mol. In TAO-DFT calculation, the results in this study suggest that n-triangulene belong to attractive Hubbard model and it will be singlet ground state for all n-triangulene. In TAO-DFT,the symmetry breaking effect was excluded due to negligible different between restricted singlet state energy and unrestricted singlet state energy (RS-US). Further, results from TAO-DFT calculation predict that there will be (n-1) delocalized lone pair electrons for n-triangulene, which is in consistent with results from Lewis electron dot structure. The Density of States (DOS) of n-triangulene (n=21) using TAO-DFT was plot. In the plot, there were cluster of surface states concentrate at the Fermi-level with their occupied numbers to be half filled. In this study, it was also shown that bandgap of n-triangulene will decrease when size of n-triangulene increases. Beside ground state properties, singlet-triplet (ST) gap, ionization potential (IP), electron affinity (EA) and fundamental gap were also calculated using TAO-DFT. The ST gap for n-triangulene were negligible small, which indicates the degenerated states at Fermi-level and further justify the use of TAO-DFT here. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:35:02Z (GMT). No. of bitstreams: 1 ntu-108-R06222059-1.pdf: 7894960 bytes, checksum: 84347fdad3bc1b309f5fa5b9968c6ecd (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv Chapter 1 Introduction ... 1 1.1 Graphene and graphene nanoflakes ... 1 1.2 Motivation ... 3 1.3 Result ... 4 Chapter 2 Theoretical background ... 5 2.1 Density functional theory ... 5 2.2 Many body problems ... 6 2.3 Hohenberg Kohn theorem ... 8 2.4 Non-interacting frame and Kohn-Sham equation ... 11 2.5 Thermally-assisted-occupation density functional thoery ... 16 Chapter 3 n-triangulene ... 21 3.1 Introduction ... 21 3.2 Computation details ... 23 3.3 Results and discussion ... 25 Chapter 4 Summary ... 41 Reference ... 43 Appendix ... 45 | |
| dc.language.iso | en | |
| dc.subject | 游離能 | zh_TW |
| dc.subject | 電子親和力 | zh_TW |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 三角稀 | zh_TW |
| dc.subject | 延伸三角稀 | zh_TW |
| dc.subject | ionization potential | en |
| dc.subject | triangulene | en |
| dc.subject | n-triangulene | en |
| dc.subject | electron affinity | en |
| dc.subject | Density functional theory | en |
| dc.title | 使用熱輔助密度泛函理論對n-triangulene之電子性質的理論研究 | zh_TW |
| dc.title | Theoretical studies of electronic properties of n-triangulene using Thermally-assisted-occupation density functional theory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 薛宏中,林倫年 | |
| dc.subject.keyword | 密度泛函理論,三角稀,延伸三角稀,游離能,電子親和力, | zh_TW |
| dc.subject.keyword | Density functional theory,triangulene,n-triangulene,ionization potential,electron affinity, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201902085 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 7.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
