Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74397
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施上粟
dc.contributor.authorChi-Hsin Liuen
dc.contributor.author劉吉興zh_TW
dc.date.accessioned2021-06-17T08:33:36Z-
dc.date.available2024-08-15
dc.date.copyright2019-08-15
dc.date.issued2019
dc.date.submitted2019-08-10
dc.identifier.citation1.Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S. (2003). Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrological Sciences Journal, 48 (3), 339-348.
2.Arthington, A. H., Bunn, S. E., Poff, N. L., and Naiman, R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological applications, 16(4), 1311-1318.
3.Batalla, R. J., Gomez, C. M., and Kondolf, G. M. (2004). Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). Journal of hydrology, 290(1-2), 117-136.
4.Botter, G., Basso, S., Porporato, A., Rodriguez‐Iturbe, I., and Rinaldo, A. (2010). Natural streamflow regime alterations: Damming of the Piave river basin (Italy). Water Resources Research, 46(6). doi.org/10.1029/2009WR008523
5.Coulibaly, P., and Burn, D. H. (2004). Wavelet analysis of variability in annual Canadian streamflows. Water Resources Research, 40(3). doi.org/10.1029/2003WR002667
6.Elkins, E. M., Pasternack, G. B., and Merz, J. E. (2007). Use of slope creation for rehabilitating incised, regulated, gravel bed rivers. Water Resources Research, 43(5) . doi.org/10.1029/2006WR005159
7.Entwistle, N., Heritage, G., and Milan, D. (2019). Ecohydraulic modelling of anabranching rivers. River Research and Applications, 35(4), 353-364.
8.Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual review of fluid mechanics, 24(1), 395-458.
9.FitzHugh, T. W., and Vogel, R. M. (2011). The impact of dams on flood flows in the United States. River Research and Applications, 27(10), 1192-1215.
10.Gaucherel, C. (2002). Use of wavelet transform for temporal characterisation of remote watersheds. Journal of hydrology, 269(3-4), 101-121.
11.Graf, W. L. (2006). Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 79(3-4), 336-360.
12.Grant, G. E., Swanson, F. J., and Wolman, M. G. (1990). Pattern and origin of stepped-bed morphology in high-gradient streams, Western Cascades, Oregon. Geological Society of America Bulletin, 102(3), 340-352.
13.Grossmann, A., and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM journal on mathematical analysis, 15(4), 723-736.
14.Hawkins, C. P., Kershner, J. L., Bisson, P. A., Bryant, M. D., Decker, L. M., Gregory, S. V., ... and Young, M. K. (1993). A hierarchical approach to classifying stream habitat features. Fisheries, 18(6), 3-12.
15.Im, D., Kang, H., Kim, K. H., and Choi, S. U. (2011). Changes of river morphology and physical fish habitat following weir removal. Ecological Engineering, 37(6), 883-892.
16.Jowett, I. G. (1997). Instream flow methods: a comparison of approaches. Regulated Rivers: Research and Management, 13(2), 115-127.
17.Kaiser, G. (1994). Wavelet Electrodynamics: Part II: Atomic Composition of Electromagnetic Waves. Applied and Computational Harmonic Analysis, 1(3), 246-260.
18.Kumar, P., and Foufoula‐Georgiou, E. (1997). Wavelet analysis for geophysical applications. Reviews of geophysics, 35(4), 385-412.
19.Kumar, P., and Foufoula‐Georgiou, E. (1993). A multicomponent decomposition of spatial rainfall fields: 1. Segregation of large‐and small‐scale features using wavelet transforms. Water Resources Research, 29(8), 2515-2532.
20.Labat, D., Ababou, R., and Mangin, A. (2000). Rainfall–runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. Journal of hydrology, 238(3-4), 149-178.
21.Labat, D. (2010). Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. Journal of Hydrology, 385(1-4), 269-278.
22.Lau, K.-M., and Weng, H. J. B. o. t. A. m. s. (1995). Climate signal detection using wavelet transform: How to make a time series sing. 76(12), 2391-2402.
23.Ligon, F. K., Dietrich, W. E., and Trush, W. J. (1995). Downstream ecological effects of dams. BioScience, 45(3), 183-192.
24.Magilligan, F. J., and Nislow, K. H. (2005). Changes in hydrologic regime by dams. Geomorphology, 71(1-2), 61-78.
25.Mallat, S. G., and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on signal processing, 41(12), 3397-3415.
26.Malmqvist, B., and Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental conservation, 29(2), 134-153.
27.McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. (2001). Climate change 2001.
28.Moir, H. J., and Pasternack, G. B. (2008). Relationships between mesoscale morphological units, stream hydraulics and Chinook salmon (Oncorhynchus tshawytscha) spawning habitat on the Lower Yuba River, California. Geomorphology, 100(3-4), 527-548.
29.Müller, F., and Burkhard, B. (2012). The indicator side of ecosystem services. Ecosystem Services, 1(1), 26-30.
30.Nakken, M. (1999). Wavelet analysis of rainfall–runoff variability isolating climatic from anthropogenic patterns. Environmental Modelling and Software, 14(4), 283-295.
31.Newson, M. D., and Newson, C. L. (2000). Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography, 24(2), 195-217.
32.Niu, J., and Sivakumar, B. (2013). Scale-dependent synthetic streamflow generation using a continuous wavelet transform. Journal of hydrology, 496, 71-78.
33.Özger, M., Mishra, A. K., and Singh, V. P. (2011). Estimating palmer drought severity index using a wavelet fuzzy logic model based on meteorological variables. International Journal of Climatology, 31(13), 2021-2032.
34.Özger, M., Mishra, A. K., and Singh, V. P. (2010). Scaling characteristics of precipitation data in conjunction with wavelet analysis. Journal of hydrology, 395(3-4), 279-288.
35.Partal, T. (2009). Modelling evapotranspiration using discrete wavelet transform and neural networks. Hydrological Processes: An International Journal, 23(25), 3545-3555.
36.Pasternack, G., and Senter, A. (2011). 21st Century instream flow assessment framework for mountain streams. California Energy Commission, PIER. Retrieved from
37.Petts, G. E. (1984). Impounded rivers: perspectives for ecological management: Wiley.
38.Petts, G. E. (2009). Instream Flow Science For Sustainable River Management 1. JAWRA Journal of the American Water Resources Association, 45(5), 1071-1086.
39.Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., ... and Stromberg, J. C. (1997). The natural flow regime. BioScience, 47(11), 769-784.
40.Postel, S. L., Daily, G. C., and Ehrlich, P. R. (1996). Human appropriation of renewable fresh water. Science, 271(5250), 785-788.
41.Power, M. E., Parker, G., Dietrich, W. E., and Sun, A. (1995). How does floodplain width affect floodplain river ecology? A preliminary exploration using simulations. Geomorphology, 13(1-4), 301-317.
42.Richter, B., Baumgartner, J., Wigington, R., and Braun, D. (1997). How much water does a river need?. Freshwater biology, 37(1), 231-249.
43.Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation biology, 10(4), 1163-1174.
44.Rosgen, D. L. (1996). Applied river morphology: Wildland Hydrology.
45.Saco, P., and Kumar, P. (2000). Coherent modes in multiscale variability of streamflow over the United States. Water Resources Research, 36(4), 1049-1067.
46.Sheldon, F., and Thoms, M. C. (2006). Relationships between flow variability and macroinvertebrate assemblage composition: data from four Australian dryland rivers. River Research and Applications, 22(2), 219-238.
47.Shiau, J. T., and Huang, C. Y. (2014). Detecting multi-purpose reservoir operation induced time-frequency alteration using wavelet transform. Water resources management, 28(11), 3577-3590.
48.Singer, M. B. (2007). The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California. River Research and Applications, 23(1), 55-72.
49.Smith, L. C., Turcotte, D. L., and Isacks, B. L. (1998). Stream flow characterization and feature detection using a discrete wavelet transform. Hydrological processes, 12(2), 233-249.
50.Steel, E. A., and Lange, I. A. (2007). Using wavelet analysis to detect changes in water temperature regimes at multiple scales: effects of multi‐purpose dams in the Willamette River basin. River Research and Applications, 23(4), 351-359.
51.Tennant, D. L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10.
52.Thomson, J. R., Taylor, M. P., Fryirs, K. A., and Brierley, G. J. (2001). A geomorphological framework for river characterization and habitat assessment. Aquatic Conservation: Marine and Freshwater Ecosystems, 11(5), 373-389.
53.Torrence, C., and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1), 61-78.
54.Veneziano, D., Furcolo, P., and Iacobellis, V. (2006). Imperfect scaling of time and space–time rainfall. Journal of Hydrology, 322(1-4), 105-119.
55.Venugopal, V., Roux, S. G., Foufoula‐Georgiou, E., and Arneodo, A. (2006). Revisiting multifractality of high‐resolution temporal rainfall using a wavelet‐based formalism. Water Resources Research, 42(6). doi.org/10.1029/2005WR004489
56.Wadeson, R. A. (1994). A geomorphological approach to the identification and classification of instream flow environments. Southern African Journal of Aquatic Science, 20(1-2), 38-61.
57.Whitcher, B., Byers, S. D., Guttorp, P., and Percival, D. B. (2002). Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River. Water Resources Research, 38(5). doi.org/10.1029/2001WR000509
58.White, M. A., Schmidt, J. C., and Topping, D. J. (2005). Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen Canyon Dam and the Colorado River at Lees Ferry, Arizona. River research and applications, 21(5), 551-565.
59.Wu, F. C., Chang, C. F., and Shiau, J. T. (2015). Assessment of flow regime alterations over a spectrum of temporal scales using wavelet‐based approaches. Water Resources Research, 51(5), 3317-3338.
60.Wyrick, J. R., and Pasternack, G. B. (2012). Landforms of the lower Yuba River. University of California, Davis.
61.Yeager, B. L. (1994). Impacts of reservoirs on the aquatic environment of regulated rivers. Tennessee Valley Authority. Water Resources, Aquatic Biology Department, Norris, Tennessee. TVA/WR/AB-93/1.
62.Zolezzi, G., Bellin, A., Bruno, M. C., Maiolini, B., and Siviglia, A. (2009). Assessing hydrological alterations at multiple temporal scales: Adige River, Italy. Water Resources Research, 45(12) . doi.org/10.1029/2008WR007266
63.施上粟,2017,水利防災中水生態系統面臨的挑戰,土木水利月刊44(5): 10-16。
64.中村俊六(1999),「自然環境保全之實施例」,土之基礎,第47期:p.41-46。
65.經濟部水利署,2006,鳶山堰運用要點。
66.經濟部水利署水利規劃試驗所,2016,淡水河水系臺北防洪執行成果初步檢討。
67.經濟部水利署水利規劃試驗所,2016,河川原生魚種及棲地適合度曲線調查。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74397-
dc.description.abstract興建大壩或堰等橫向水利建造物可提供水資源、水力發電、防洪、娛樂等功能,在人類社會高度發展過程中扮演重要角色。然而,大部分在興建之初都未考慮對生態系統的衝擊效應,包括可能大幅度改變了河川的流態狀況,及降低對水生生物覓食、產卵等棲地品質,並進一步導致棲地單一化而降低生物多樣性。本研究旨在應用小波分析法量化橫向水利建造物對河川流態的影響程度,找出河川流量中受影響程度最大的關鍵時間尺度,同時加入環境流量和相關的棲地保護進行討論,並以臺灣北部大漢溪中游的鳶山堰為例,分析其興建前後為主研究案例。為了更好的識別多重尺度臨界值,小波方法和時間序列超越機率的應用起到關鍵作用,例如日尺度,周尺度,月尺度和年尺度等等。考慮到在汛期與非汛期之間的長期影響以及不同的流量機制,本研究對1970年至1995年下游的歷史流量資料進行蒐集作為研究資料。此外,借助水平二維模式SRH-2D用於計算最具影響力流量下的流態特徵,以確定相關棲地模式的水文變化。結果表明,興建啓用堰之後不論在本研究中哪種時間尺度,其對下游的流量振幅變化都比較劇烈,即下游流態變得比較不穩定,且影響主要表現在2日尺度至1星期尺度週期內。對低頻率高能量事件(即汛期),其年尺度影響並不明顯;然而,較低流量事件相應的臨界環境流量在非汛期受到顯著影響。另外,棲地模式的模擬結果發現淺流(glide)為主要棲地類型,且攔河堰運作後,下游河道水域總面積減小、棲地單一化,棲地品質亦有下降趨勢,可見其對下游生態系統的確有負面影響,尤其對深流(run)及淺瀨(riffle)影響最大。本研究建議攔河堰在規劃取水時機及取水量時若能增加自然流態的考量,或營造淺瀨及深流的棲地型態,將有助於降低對下游環境流量及生態系統的衝擊。zh_TW
dc.description.abstractDams and weirs contribute significantly to human society, such as water resources supply, power generation, flood control, and recreation. However, most of them were built with little consideration on ecological conservation, altering the river flow regime dramatically and leading to severe effects on the endemic aquatic organisms. This study aims at quantifying the difference of flow regime before and after the construction of Yuanshan weir, located in the middle reaches of Dahan Creek, northern Taiwan. The environment flow and related habitat conservation are also discussed. Wavelet methods and time-series transcendence probability were used to identify the critical time scales, such as daily, weekly, monthly, and yearly. Considering the long-term effects and the variant flow regimes between flood period and non-flood period, the historical flow discharge data of the downstream from 1970 to 1995 was collected. In addition, a horizontal two-dimensional model, SRH-2D, was used to calculate the flow characteristics of the most influential flow for determining the hydrological alterations of related habitat pattern. The results show that no matter which time scale in this study, the amplitude of the downstream flow changes drastically after the weir construction, indicating that the downstream flow regime becomes unstable. The influence is mainly manifested in the 2-day scale to the 1-week scale period. For low-frequency with high-energy events, usually representing flood period, the annual scale impact is not significant; however, the corresponding critical environmental flows of lower-flow events are significantly affected during non-flood periods. The simulation results of the habitat suitability model found that the dominant habitat type was glide. We also found that after the weir operation, the total water area declined. Besides, both of the aquatic habitat diversity and habitat quality declined, particularly for the impact of run and riffle. The results reveal that the weir has significant negative effects on the downstream ecosystem. This study helps to provide suggestions for the construction and effective use of water conservancy projects in the future, as well as the management of the water environment in the downstream reaches. We suggest that dams and weirs can better exert their water conservancy functions while considering natural flow regime for maintaining the ecological benefits of downstream reaches.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:33:36Z (GMT). No. of bitstreams: 1
ntu-108-R06521328-1.pdf: 6039018 bytes, checksum: f7063c0b2c12c966aecc2754eb5666ac (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究區域 3
1.4 研究流程 5
第二章 文獻回顧 7
2.1 小波分析 7
2.2 環境流量 9
2.2.1 經驗法 (empirical methods) 9
2.2.2 水文法 (hydrological method) 11
2.2.3 水理法(hydraulic methods) 12
2.2.4 棲地評估法 (habitat methods) 12
第三章 研究方法 14
3.1 資料蒐集 14
3.1.1 水文資料蒐集 14
3.1.2 地形資料蒐集 15
3.2 小波分析 17
3.2.1 定義 17
3.2.2 小波轉換 17
3.3 SRH-2D水理模式 19
3.3.1 控制方程式 20
3.3.2 參數及邊界條件設置設定 21
3.4 棲地模式 27
3.4.1 魚類可用棲地面積 27
3.4.2 棲地單元 27
3.4.3 棲地品質 29
第四章 結果分析 34
4.1 流量及流態變遷 34
4.2 小波分析 39
4.2.1 小波模式測試結果 39
4.2.2 關鍵受影響流量分析 40
4.3 棲地及水理結果分析 44
4.3.1 SRH-2D水理 44
4.3.2 棲地分析 47
第五章 結論與建議 79
5.1 結論 79
5.2 建議 80
REFERENCE 82
dc.language.isozh-TW
dc.subject棲地適合度zh_TW
dc.subject攔河堰zh_TW
dc.subject流態zh_TW
dc.subject小波法zh_TW
dc.subject水文變化zh_TW
dc.subjectweirsen
dc.subjecthabitat suitabilityen
dc.subjecthydrologic alterationen
dc.subjectwavelet methodsen
dc.subjectflow regimeen
dc.title應用小波法分析橫向水利構造物對河川流態之影響zh_TW
dc.titleWavelet Methods on Analyzing Flow Regime Alterations
along with Weir Effects
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游景雲,胡明哲
dc.subject.keyword攔河堰,流態,小波法,水文變化,棲地適合度,zh_TW
dc.subject.keywordweirs,flow regime,wavelet methods,hydrologic alteration,habitat suitability,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201902928
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
5.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved