Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74361
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯(Louis Ge)
dc.contributor.authorYa-Ru Lien
dc.contributor.author李亞儒zh_TW
dc.date.accessioned2021-06-17T08:31:44Z-
dc.date.available2022-08-18
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation1. 江國良 (1990),「飽和砂土受反覆荷重作用後之不排水受剪行為」,國立臺灣大學土木工程學系研究所,碩士論文。
2. 黃耀道 (2007),「台灣中西部粉土質砂土液化行為分析」,國立交通大學土木工程學系研究所,博士論文。
3. 廖宜彥 (2007),「砂土液化後之剪力阻抗與剪應變之關係」,國立臺灣大學土木工程學系研究所,碩士論文。
4. 江孟衡 (2013),「低塑性細粒料土壤抗液化強度之研究」,國立臺灣大學土木工程學系研究所,碩士論文。
5. 葉憶萱 (2018),「細顆粒含量對於粗細砂混合物之力學性質的影響」,國立臺灣大學土木工程學系研究所,碩士論文。
6. 蔡容正 (2018),「以有效應力參數評估含細粒料砂土不排水之力學行為」,國立臺灣大學土木工程學系研究所,碩士論文。
7. Anderson, K.K. (2009) Bearing capacity under cyclic loading — offshore, along the coast, and on land. Canadian Geotechnical Journal, 46(5), 513-535.
8. ASTM, D. (2004). Standard test method for consolidated undrained triaxial compression test for cohesive soils. Annual Book of ASTM.
9. ASTM, D. (2010). Standard test methods for specific gravity of soil solids by water pycnometer. Annual Book of ASTM.
10. ASTM, D. (2011). Standard test method for consolidated drained triaxial compression test for soils. Annual Book of ASTM.
11. ASTM, D. (2013). Standard test method for load controlled cyclic triaxial strength of soil. Annual Book of ASTM.
12. Boulanger, Ross W. and Idriss, I. M. (2006). Liquefaction susceptibility criteria for silts and clays. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413-1426.
13. Bray, J. D. and Sancio, R.B., (2006). Assessment of the liquefaction susceptibility of fine-grained soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(9), 1165-1177.
14. Castro, G. (1969). Liquefaction of Sands (Doctoral thesis). Harvard University, Cambridge Massachusetts.
15. Chang, C. S., and Meidani, M. (2013). Dominant grains network and behavior of sand–silt mixtures: stress–strain modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 37(15), 2563-2589.
16. Chang, C.S., Wang, J.Y. and Ge, L. (2015). Modeling of Minimum void ratio for sand-silt mixtures. Engineering Geology, 196, 293-304
17. Chien, L. K., Oh, Y. N. and Chang, C. H. (2002). Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil. Canadian Geotechnical Journal, 39(1), 254-265.
18. Erken, A. and Can Ulker, B.M. (2007). Effect of cyclic loading on monotonic shear strength of fine-grained soils. Engineering Geology, 89, 243-257
19. Fraser, H. J. (1935). Experimental study of the porosity and permeability of clastic sediments. The Journal of Geology, 43(8, Part 1), 910-1010.
20. Flitti, A., Della, N. and Flores, R. V. (2017). Experimental study of the shear resistance of granular material: influence of initial state. Journal of Theoretical and Applied Mechanics, 55(2), 523-533.
21. Guo, T. and Prakash, S. (1999). Liquefaction of silts and silt-clay mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 125(8), 706-710.
22. Head, K.H. (1986). Manual of Soil Laboratory Testing. Pentech Press.
23. Huang, A.B. and Huang Y.T. (2007). Undisturbed sampling and laboratory shearing tests on a sand with various fines contents. Soils and Foundations, 47(4), 771-781.
24. Huang, A.B., Chang, W.J., Hsu, H. H. and Huang, Y.J. (2015). A mist pluviation method for reconstituting silty sand specimens. Engineering Geology, 188, 1-9.
25. Ishihara, K., Tatsuoka, F. and Yasuda, S. (1975). Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundations, 15(1), 29-44.
26. Iwasaki, T., Arakawa, T. and Tokida, K. (1984). Simplified procedure for assessing soil liquefaction during earthquakes. Soil Dynamics and Earthquake Engineering, 3(1), 49-58.
27. Kang, X., Xia, Z., Chen, R., Ge, L. and Liu, X. (2018). The critical state and steady state of sand: A literature review. Marine Georesources & Geotechnology, 1-14.
28. Kaya, Z. and Erken, A. (2015). Cyclic and post-cyclic monotonic behavior of Adapazari soils. Soil Dynamics and Earthquake Engineering, 77, 75-82.
29. Kramer, Steven L. (1996). Geotechnical Earthquake Engineering. New Jersey, Prentice Hall
30. Lade, P. V., Liggio, C. D. and Yamamuro, J. A. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21, 336-347.
31. Mansour, M.F., Abdel-Motaal, M.A. and Ali, A.M. (2016). Seismic bearing capacity of shallow foundations on partially liquefiable saturated sand. International Journal of Geotechnical Engineering, 10(2), 123-134.
32. Noorzad, R. and Shakeri, M. (2017) Effect of silt on post-cyclic shear strength of sand. Soil Dynamics and Earthquake Engineering, 97, 133-142.
33. Polito, C.P. and Martin, J.R. (2001). Effects of nonplastic fines on the liquefaction resistence of sands. Journal of Geotechnical and Geoenvironmental Engineering, 127(5),408-415.
34. Prakash, S. and Sandoval, J. A. (1992). Liquefaction of low plasticity silts. Soil Dynamics and Earthquake Engineering, 11(7), 373-379.
35. Sandoval, J. (1989). Liquefaction and settlement characteristics of silt soils (Doctoral thesis). University of Missouri-Rolla, Mo.
36. Seed, H. Bolton., Tokimatsu, K., Harder, L. F., and Chung, Riley M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical and Engineering, 111(12), 1425-1444.
37. Shehan, T.C., Ladd, T.C. and Germanie, J.T. (1996). Rate-dependent undrained shear behavior of saturated clay. Journal of Geotechnical and Engineering, 122(2), 99-108.
38. Thevanayagam, S. and Mohan, S. (2000). Intergranular state variables and stress-strain behavior of silty sands. Geotechnique, 50(1), 1-23.
39. Thevanayagam, S. (2007). Intergrain contact density indices for granular mixes-Ⅰ: Framework. Earthquake Engineering and Engineering Vibration, 6(2), 123-134.
40. Vaid, Y. P. and Thomas, J. (1995). Liquefaction and postliquefaction behavior of sand. Journal of Geotechnical and Engineering, 121(2), 163-173.
41. Vallejo, L. E. (2001). Interpretation of the limits in shear strength in binary granular mixtures. Canadian Geotechnical Journal, 38(5), 1097-1104.
42. Vesic, A.S. (1973). Analysis of ultimate loads of shallow foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45-73.
43. Wang, S., Luna, R. and Zhao, H. (2015). Cyclic and post-cyclic shear behavior of low-plasticity silt with varying clay content. Soil Dynamics and Earthquake Engineering, 75, 112-120.
44. Yamamuro, J.A. and Wood, F.M. (2004). Effect of depositional method on the undrained behavior and microstructure of sand with silt. Soil Dynamics and Earthquake Engineering, 24(9-10), 751-760.
45. Yasuhara, K., Murakami, S., Song, B.-W., Yokokawa, S. and Hyde, Adrian F. L. (2003). Postcyclic degradation of strength and stiffness for low plasticity silt. Journal of Geotechnical and Engineering, 129(8), 756-769.
46. Zerfoun, M. and Vaid, Y.P. (1994). Effective stress response of clay to undrained cyclic loading. Canadian Geotechnical Journal, 31(5), 714-727.
47. Zhou, W., Xu, K., Ma, G., Yang, L. and Chang, X. (2016). Effects of particle size ratio on the macro-and microscopic behaviors of binary mixtures at the maximum packing efficiency state. Granular Matter, 18(4), 81.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74361-
dc.description.abstract臺灣位於環太平洋地震帶上,每年約發生一萬六千餘次規模大小不一的地震,而土壤液化往往伴隨著地震的發生而形成,進一步使坐落於地表之結構物傾倒,而近年來,許多研究皆在探討在非塑性土壤在地震過後超額孔隙水壓消散之行為。
現地之土壤通常是不同粒徑大小組成,而顆粒大小之排列會進一步之影響到土壤之行為,自1990年前後,許多學者也提出了二元混合物排列所產生變化之概念,並在近幾年廣泛應用在大地工程中。
根據前人的研究結果,有效粒徑比為9.66的越南石英砂之細顆粒含量約為35%時,土壤可以達到極限值(最緊密的狀態)。此研究為了探討不同細顆粒含量之砂土(15%、35%)在動態荷載後之行為,以二元混和物之框架解讀此兩種細顆粒含量值皆位於極限值之左側。本研究藉由控制相同孔隙比施作了三種不同形式之三軸試驗,包含:靜態均向壓密排水試驗、靜態均向壓密不排水試驗以及動態均向壓密不排水試驗,並且所有試體皆以濕夯法進行製作,以軸向應變等於15%時的軸差應力作為土壤強度,並且更進一步探討相對密度及孔隙比對二元混和物之適用性。
根據本研究實驗結果顯示,在控制孔隙比為0.65且細顆粒含量等於35%時,土壤強度並非一直隨著超額孔隙水壓比上升而下降,在孔隙水壓比低於0.5時,土壤強度會隨著孔隙水壓比上升而下降;在孔隙水壓比超過大約0.5時,試體強度則會隨著孔隙水壓比上升而有上升的趨勢,但相同孔隙比於細顆粒含量等於15%時,則會出現不同之結果,在孔隙水壓比小於0.45時,試體強度並不會產生太大之變化,而大於0.45後則會有強度折減之情形發生。本研究也發現在動態荷載期間試體之軸向應變為一可能產生此結果之原因,並且透過Thevanayagam在2007年提出的修正孔隙比公式計算出之孔隙比可以更有效的描述二元混和物實際之顆粒接觸情形。
zh_TW
dc.description.abstractTaiwan is located on the circum-pacific seismic belt, where more than 16 thousand earthquakes along with liquefaction occurs each year. Liquefaction may make the buildings tilted and induce ground settlement. In-situ soils are composed by various sizes and different types of particles. The arrangements may change the behavior of the mixtures. The previous experimental result shows fines content equals to 35% is a limit value (the densest condition). Based on the framework of binary packing, those two proportions both locate on the left side To observe the post-cyclic behavior of the granular mixtures, this research uses different proportions of fine sands by weight to conduct three types of triaxial tests, which include CID, CIU, and CIUcyc tests. All the specimens are prepared by wet tamping method. The result shows that, the reduction of the soil strength is not a decrement trend when ru value increases at the fines content equals to 35% (ru = 0.5 is a critical point). While the ru value is approximately less than 0.5, the deviatoric stress at monotonic loading becomes lower with the more excess pore water pressure is generated in cyclic loading. But, the ru value exceeds the 0.5 approximately, the soil strength of specimen becomes greater when the excess pore water pressure becomes higher. In addition, there is a different performance for the specimens with fines content equals to 15%. The result shows a huge decreased phenomenon of the soil strength when the ru goes beyond 0.45. Furthermore, the soil strength exhibits the similar value when the ru value goes below 0.45. This research also points out the diversification of the axial strain during the cyclic loading is a main reason to occur this kind of result. The intergranular void ratio is considered a better parameter to describe the actual contact condition of the coarse and fine particle in granular mixture.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:31:44Z (GMT). No. of bitstreams: 1
ntu-108-R06521104-1.pdf: 7298412 bytes, checksum: 0a84b3e486339653df411c47f39aba4b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 I
ACKNOWLEDGMENTS II
摘要 III
ABSTRACT I
CONTENTS III
LIST OF FIGURES VI
LIST OF TABLES XII
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Research Objectives 2
1.3 Thesis Outline 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Packing Theory 4
2.1.1 Binary mixtures and Particle Size Ratio 4
2.1.2 Previous Studies on Binary Mixtures 5
2.1.3 Modeling for Minimum Void Ratio 6
2.1.4 Modeling for Maximum Void Ratio 9
2.2 The Behavior of Soil 10
2.2.1 Undrained Behavior of Sands 10
2.2.2 The Post-Cyclic Behavior of Sands 10
2.2.3 The Post-Cyclic Behavior of Mixtures 11
2.3 Effect of The Reconstituted Granular Mixtures with Different Method 13
2.4 The Density Indices and Liquefaction Resistance for Granular Mixes 15
CHAPTER 3 EXPERIMENTAL PROGRAM 28
3.1 Objectives 28
3.2 Materials and Physical Properties 29
3.3 Preparation of The Experimental Specimens 30
3.4 Apparatus 30
3.5 Isotropic Consolidated Drained Triaxial Compression Test 33
3.5.1 Procedure of The Experiment 33
3.6 Isotropic Consolidated Undrained Triaxial Compression Test 38
3.6.1 Procedure of The Experiment 38
3.7 Isotropic Consolidated Undrained Cyclic Triaxial Test 39
3.7.1 Procedure of The Experiment 39
CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSIONS 60
4.1 Results and Discussions of The Critical State Behavior of Different Fines Content 61
4.2 Results and Discussions of The Isotropic Consolidated Undrained Triaxial Tests (CIU Test) 61
4.3 Results of Isotropic Consolidated Undrained Cyclic Triaxial Tests (CIUcyc Test) 63
4.3.1 For Fines Content Equals to 35% (Dr almost equals to 20%) 63
4.3.2 For Fines Content Equals to 15% (Dr almost equals to 35%) 64
4.3.3 For The Specimens with Dr Equals to 50% 66
4.4 Discussions of The Isotropic Consolidated Undrained Triaxial Tests (CIUcyc Tests) with Two Proportions 67
4.4.1 Critical State Line and Effective Stress Paths 67
4.4.2 Various of The Soil Strength 68
4.4.3 Binary Packing and Intergranular Void Ratio 70
4.4.4 Comparison with Different Relative Density for Same Proportion 72
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 90
5.1 Conclusions 90
5.2 Recommendations 92
REFERENCE 93
APPENDIX A 100
APPENDIX B 112
dc.language.isoen
dc.subject非塑性土壤zh_TW
dc.subject細顆粒含量zh_TW
dc.subject二元混和物zh_TW
dc.subject三軸試驗zh_TW
dc.subject動態荷載zh_TW
dc.subject土壤液化zh_TW
dc.subject孔隙水壓比zh_TW
dc.subjectexcess pore water pressure ratioen
dc.subjecttriaxial testen
dc.subjectnon-plastic soilen
dc.subjectfines contenten
dc.subjectpost-cyclic behavioren
dc.subjectbinary packing theoryen
dc.subjectliquefactionen
dc.title以二元混和物之框架探討砂土於動態荷載後之行為zh_TW
dc.titleInvestigation of Post Cyclic Behavior of Sands under The Framework of Binary Packingen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧之偉(Chih-Wei Lu),鄧福宸(Fu-Chen Teng),郭安妮(Annie On-Lei Kowk)
dc.subject.keyword土壤液化,三軸試驗,非塑性土壤,細顆粒含量,孔隙水壓比,動態荷載,二元混和物,zh_TW
dc.subject.keywordliquefaction,triaxial test,non-plastic soil,fines content,post-cyclic behavior,binary packing theory,excess pore water pressure ratio,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201902749
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
7.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved