Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡克銓(Keh-Chyuan Tsai)
dc.contributor.authorYu-Cheng Linen
dc.contributor.author林昱成zh_TW
dc.date.accessioned2021-06-17T08:30:34Z-
dc.date.available2024-01-22
dc.date.copyright2021-02-22
dc.date.issued2020
dc.date.submitted2021-01-22
dc.identifier.citation參考文獻
1. Abaqus (2013), Abaqus Version 6.13 Documentation, Dassault Systemes Simulia Corp., Providence, RI, USA.
2. American Concrete Institute (ACI), “Building Code Requirements for Structural Concrete and Commentary (ACI 318-14)”, ACI, Farmington Hills, Michigan, 2014.
3. American Institute of Steel Construction (AISC), “Seismic Provisions for Structural Steel Buildings (AISC 341-16)”, AISC, Chicago, Illinois, 2016.
4. American Institute of Steel Construction (AISC), “Specification for Structural Steel Buildings (AISC 360-16)”, AISC, Chicago, Illinois, 2016.
5. Black, C.J., Makris, N. and Aiken, I.D. (2004), “Component testing, seismic evaluation and characterization of buckling-restrained braces”, Journal of Structural Engineering, 2004; 130:880-894.
6. Chen, L.W., Tsai, K.C., Tsai, C.Y. and Wu, A.C. (2019), “Evaluating out-of-plane stability for welded BRBs considering flexural restrainer and gusset rotations”, Journal of Constructional Steel Research, 2019; 159:161-175.
7. Chuang, M.C., Tsai, K.C., Lin, P.C. and Wu, A.C. (2015), “Critical limit states in seismic buckling-restrained brace and connection designs”, Earthquake Engineering Structural Dynamics, 2015; 44:1559-1579.
8. ETABS (2017), CSi Analysis Reference Manual, Computer Structures Inc., 2018
9. Gere, J.M. and Goodno, B.J. (2013), “Mechanics of materials”, Cengage Learning, eighth edition.
10. Guo, Y.L., Zhou, P., Wang, M.Z., Pi, Y.L. and Bradford, M.A. (2017), “Numerical studies of cyclic behavior and design suggestions on triple-truss-confined buckling-restrained braces”, Engineering Structures, 2017; 146:1-17.
11. Guo, Y.L., Zhou, P., Wang, M.Z., Pi, Y.L., Bradford, M.A. and Tong, J.Z. (2017), “Experimental and numerical studies of hysteretic response of triple-truss-confined buckling-restrained braces”, Engineering Structures, 2017; 148:157-174.
12. Hibbeler, R.C. (2011), “Structural analysis”, Pearson Education South Asia Pte Ltd, eighth edition.
13. Lin B.Z., Chung M.C. and Tsai K.C.(2009), “Object-oriented development and application of a nonlinear structural analysis framework.” Advances in Engineering Software, 40, 66–82
14. National Center for Research on Earthquake Engineering and Department of Civil Engineering, National Taiwan University (2014), “User Guide for BOD: Buckling-Restrained Brace and Connection Design Procedures”.
15. Seval, P.C, Erkan, A.,Fuad O.,Hilal M.A. and Sevket, O. (2012), “Analytical, Numerical and Experimental Studies on Stability of Three-Segment Compression Members with Pinned Ends”, Advances in Computational Stability Analysis,Rijeka,Croatia, 2012.
16. Tsai, C.Y., Tsai, K.C., Chen, L.W. and Wu, A.C. (2018), “Seismic performance analysis of BRBs and gussets in a full-scale 2-story BRB-RCF specimen”, Earthquake Engineering Structural Dynamics, 2018; 47:2366-2389.
17. Tsai, K.C., Wu, A.C., Wei, C.Y., Lin, P.C., Chuang, M.C. and Yu, Y.J. (2014), “Welded end-slot connection and debonding layers for buckling-restrained braces”, Earthquake Engineering Structural Dynamics, 2014; 43:1785-1807.
18. Takeuchi, T., Matsui, R. and Mihara, S. (2016), “Out-of-plane stability assessment of buckling-restrained braces including connections with chevron configuration”, Earthquake Engineering Structural Dynamics, 2016; 45:1895-1917.
19. Takeuchi, T., Ozaki, H. and Matsui, R. (2013), “Out-of-plane stability assessment of buckling restrained braces including moment transfer capacity at restrainer-end”, Journal of Structural and Constructon Engineering, 2013; 78:1621-1630.
20. Takeuchi, T., Ozaki, H., Matsui, R. and Sutcu, F. (2014), “Out-of-plane stability of buckling-restrained braces including moment transfer capacity”, Earthquake Engineering Structural Dynamics, 2014; 43:851-869.
21. Takeuchi, T. and Wada, A. (2017), “Buckling-restrained braces and applications”, The Japan Society of Seismic Isolation.
22. Wu, A.C., Tsai, K.C., Lin, T.L, Tsai, C.Y. and Wang, K.J. (2020), “Seismic Response of RC Braced Frames with Buckling-Restrained Braces Connected to Corbels”, Advanced Steel Construction, 2020; 16:85-93
23. 吳安傑、林保均、莊明介、蔡克銓,民國104年,「挫屈束制支撐構架設計概要與工程應用」,結構工程,第30卷,第1期,第11-33頁。
24. 財團法人國家實驗研究院國家地震工程研究中心與國立臺灣大學土木工程學系,民國103年,「挫屈束制支撐與接合設計雲端運算流程解說」。
25. 蔡克銓、吳安傑、林保均、魏志毓、莊明介,民國101年,「槽接式挫屈束制支撐與脫層材料性能研究」,結構工程,第27卷,第3期,第29-59頁。
26. 劉勛仁、簡文郁、張毓文,民國 109年,「台灣泛域工址設計用實測地震歷時篩選研究」,中華民國第十五屆結構工程研討會暨第五屆地震工程研討會,編號: 11104,台南。
27. 簡文郁、劉勛仁、張毓文,民國 109年,「臺北盆地耐震設計基準地震反應譜研究」,中華民國第十五屆結構工程研討會暨第五屆地震工程研討會,編號: 11104,台南。
28. 中華民國內政部營建署,民國100年,「建築物耐震設計規範及解說(2011)」
29. 中華民國內政部營建署,民國100年,「鋼骨鋼筋混凝土構造設計規範與解說(2011)」
30. 中華民國內政部營建署,民國99年,「鋼結構容許應力設計法與極限設計法規範及解說」。
31. 陳力維,民國107年,「考量挫曲束制斜撐圍束單元撓曲之整體面外穩定性研究」,國立臺灣大學工學院土木工程學系碩士論文。
32. 歐易佳,民國107年,「利用虛擬側向力與塑性分析法探討挫屈束制支撐整體面外穩定性」,國立臺灣大學工學院土木工程學系碩士論文。
33. 陳雋,民國109年,「桁架圍束式挫屈束制支撐之設計分析與試驗研究」,國立臺灣大學工學院土木工程學系碩士論文。
34. 林庭立,民國105年,「之字型配置挫屈束制支撐於鋼筋混凝土構架之接頭耐震試驗與分析研究」,國立臺灣大學工學院土木工程學系碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74338-
dc.description.abstract挫屈束制支撐 (buckling-restrained brace, BRB) 能經濟且有效地提升結構之勁度、強度、韌性與消能行為,BRBF 已廣泛運用於建築中做為主要耐震結構系統。桁架圍束式挫屈束制支撐 (truss-confined BRB, TC-BRB) 之圍束單元由中央圍束鋼管於其周圍配置任意數量、方向與尺寸之剛性桁架所構成之新型 BRB,藉由桁架構架幾何配置提供所需之撓曲剛度,因此得以減低含內灌砂漿之中央鋼管斷面撓曲剛度;進而減少材料用量與自重同時維持 BRB 容許發展之強度;此優勢特別利於具長跨與高軸力容量斜撐構件之應用。為推廣此新型 BRB,本研究承襲前研究者之理論模型與設計方法,於國家地震工程研究中心多軸向試驗系統執行第二階段新造兩組具不同桁架圍束系統型態、1/5縮尺總長 6.3 米、100噸級之 TC-BRB 試體 2CT 與 2VT 之反覆加載試驗。為更一步探討 TC-BRB 做為長跨巨型斜撐實際運用於高層結構之可行性,本研究提出一幢 23 層三維建築,每六層採之字形配置長跨 TC-BRB,由特殊抗彎架 SMRF 與 BRBF 組成之二元系統結構設計例,建立耐震設計流程,並各採 21 組三向地震進行非線性歷時分析,以探討在三種不同地震危害度下之耐震性能。
構件第二階段試驗結果顯示,2CT 與 2VT 其挫屈破壞強度 Plim 分別為 1633 與1647kN,而理論模型對於 Plim 之預測最大誤差為 17%,比對第一階段試驗結果證實殘餘應力的影響必須量化,預測模型亦須改良;但兩試體最大核心應變皆達 2.23% 弧度,其累積塑性應變 CPD 累積亦超過 200,滿足規範需求並展現較第一階段更優良之穩定性表現。本階段試驗比對有限元分析結果,顯示藉考量殘餘應力效應之有限元素模型能準確模擬之變斷面試體 2VT 之反應,誤差僅 1.5%。
23 層設計例前三振動週期分別為 2.12(45°)、2.10(135°) 及 1.15秒(旋轉),顯示結構系統有較大的側向勁度;且前三模態之質量參與比例各約為 75%。21 組歷史性三向地震放大至台北二區DBE放大因子在 2.61 至 8.34 之間,動力分析結果顯示在三個地震危害度作用下,各樓層最大層間位移角SLE下大部分樓層小於 0.5% 弧度,而高樓層局部樓層則接近 1% 弧度;而 DBE、MCE 則不超過 2% 弧度;而跨六層之 BRBF 各層最大層間位移角為 0.400、0.958、1.192% 弧度,顯示結構體每六層內未受斜撐束制樓層有局部較大反應產生,但驗證 TC-BRB 構件試驗所採設計側位移角 1% 弧度為合理假設。而最大基底剪力分別為 2832、4652、5158 噸,分別為採 I = 1.25 計算 LRFD 設計基底剪力 2560 噸之 1.14、1.69、1.84倍,而 BRBF 於 DBE 下佔整體基底剪力 81%;BRBF 角柱軸力 DCR 於 DBE 與 MCE 下各層最大平均值分別達 0.82 與 0.86;轉換層邊梁水平拉或壓力設計考量可採用 0.5 倍上下層 BRB 最大設計拉力強度之水平合力。累積塑性變形 (CPD) 於 MCE 下單支 TC-BRB 最大累積至 50.1。非線性歷時分析結果驗證所提設計流程與分析模型之可靠性,與跨樓層斜撐配置之結構體其高效率與經濟性。有限元素模型分析實尺寸降伏強度為 1500 噸,40 米長跨 TC-BRB 結果顯示自重為 58 噸,前兩自然振動頻率為 1.91 與 2.53 赫茲,本研究根據兩階段試驗提出簡化設計流程提供使用者快速設計桁架圍束單元。
zh_TW
dc.description.abstractBuckling-restrained brace (BRB) can effectively improve the stiffness, strength, ductility and energy dissipation capability of the structures, and BRBF is widely used in structures as the main seismic structure system. Truss-confined BRB (TC-BRB) is a novel type of BRB whose restrainer is composed of several steel open-web truss frames outside a central steel casing. Properly configuring the truss frames, TC-BRB’s restrainer can effectively develop the overall restraining rigidity. Thus, the cross section of the central steel casing and the infilled mortar in the TC-BRB can be much lighter than those in a conventional BRB. The reduction of the overall material and self-weight is particularly advantageous in the cases of long-span and large axial capacity BRB designs. Based on the test results, a theoretical model and design procedures developed in the previous research, this study conducts the second phase of the cyclic loading test program. Two 1/5 scaled TC-BRB specimens, each of 6.3m long with 100 tonf nominal yield strength in the constant- and varying-depth truss designs were tested in NCREE. In order to illustrate the feasibility of using TC-BRBs as the long-span mega truss braces in high-rise buildings, a 23-story steel structure is exampled. In this three-dimensional SMRF and BRBF dual system, the TC-BRBs are zigzag-configured across five or six stories in the exterior elevations. Seismic design requirements of the SMRF, the setback of the floor beams, the lateral support requirements of the corner columns and the collector beams are investigated using the nonlinear response history analysis (NLRHA) and 21 sets of ground motion records.
The second-phase component test results show that the buckling failure strengths (Plim) of 2CT and 2VT are 1633 and 1647kN, respectively. The prediction error from using the theoretical model on buckling failure strength is 17%. As also observed in predicting the first-phase VT test results, the effects of residual stress must be incorporated into the prediction model in order to improve its accuracy. Nonetheless, the maximum core strain of the two specimens reached 2.23% radians, and the cumulative plastic deformations (CPDs) of both 2CT and 2VT exceeded 200. Applying a linearly-reduced Young Modulus vs. strain relationship to simulate the residual stress effects in the chord members of the truss system, the ABAQUS finite element model (FEM) analysis satisfactorily predict the experimental failure strength of specimen 2VT with an error of only 1.5%.
The first three modal periods of the example 23-story building are 2.12s (45°)、2.10s (135°) and 1.15s (rotation), and each of the first three modal mass participation ratios is about 75%. The scaling factors of the 21 ground motions scaled to DBE for Zone 2 of Taipei City are ranging from 2.61 to 8.34. The NLRHA results show that the maximum average lateral drifts computed from the floors at two ends of the TC-BRB are 0.400, 0.958 and 1.19% radians, respectively under the SLE, DBE and MCE. This suggests that the long-span TC-BRBs seem to have transformed the 23-story structure into a mega 4-story building, and helped to reduce overall lateral drifts and make their distribution more uniformly. It also validates the assumption of applying 1% radian as the design story drift adopted in both two phases of the component tests. However, it appears that there are some locally enlarged story drifts in the higher stories. Under the SLEs, the maximum average inter-story drifts of most stories are less than 0.5% radian, except in some higher stories are closed to 1% radian. Under the DBEs and MCEs, the maximum average inter-story drifts are all less than 2% radian. The maximum base shears under the three hazard level earthquakes are 2832, 4652, 5158 tonf, respectively. These are 1.14, 1.69, 1.84 time the LRFD design shear of 2560 tonf using an importance factor of I =1.25. The base shear of the BRBF accounts for 81% of the overall base shear under DBE. The maximum average DCRs of the BRBF corner column axial force under DBE and MCE are 0.82 and 0.86, respectively. The horizontal maximum tension or compression force in the edge beam at the transfer floor can be computed from 50% of the sum of horizontal components of maximum design tensile forces of the two adjacent TC-BRBs from above and below the transfer floor. The NLRHA results demonstrate the reliability of the design procedures, the high efficiency of the example structure system. The FEM analysis results of the realistic 40-meter-long-span, 1500 tonf yield capacity TC-BRB indicate that the self-weight is 58 tonf, the 1st and 2nd modal frequencies are 1.91 and 2.53 Hz, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:30:34Z (GMT). No. of bitstreams: 1
U0001-2201202113110700.pdf: 30062619 bytes, checksum: 3a2903e960b4743f9daa7f46f759067f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 ix
圖目錄 xii
照片目錄 xviii
第一章 緒論 1
1.1 概述 1
1.2 研究目的 2
1.3 研究方法 3
1.4 論文架構 4
第二章 背景與文獻回顧 5
2.1 挫屈束制支撐 5
2.1.1 概述 5
2.1.2 組成與功能 6
2.1.3 力學行為 7
2.2 相關文獻回顧 10
2.2.1 BRB 構架與構件設計概要 10
2.2.2 BRB 面外整體穩定性研究 12
2.2.3 桁架圍束式挫屈束制支撐 14
第三章 桁架圍束式挫屈束制支撐構件試驗計畫與配置 20
3.1 概述 20
3.2 桁架圍束式挫屈束制支撐簡介 21
3.2.1 組成與構件細節 21
3.2.2 斷面與長度尺寸 24
3.3 試驗目的 26
3.4 試體規劃 26
3.4.1 試體設計 26
3.4.2 試體製作 28
3.5 試驗配置 30
3.6 加載歷程 30
3.7 量測計畫 32
第四章 試驗結果與討論 35
4.1 鋼材之材料拉伸試驗 35
4.2 砂漿之材料抗壓試驗 36
4.3 摩擦力計算 37
4.4 初始凹曲之量測結果 37
4.5 反覆加載試驗結果 38
4.5.1 2CT 試驗結果 38
4.5.2 2VT 試驗結果 39
4.5.3 小結 40
4.6 變形之量測結果 40
4.6.1 2CT端部面外位移修正 40
4.6.2 面內旋轉變形 41
4.6.3 彈性變形機構與挫屈破壞機構 42
4.7 桁架桿件內力之量測結果 43
4.8 穩定性模型預測結果與試驗之比對 44
4.8.1 初始凹曲與端部面外位移 44
4.8.2 有限元素模型預測分析結果 45
4.8.3 理論模型預測分析結果 45
4.8.4 考量殘餘應力修正理論模型分析結果 46
第五章 含跨樓層桁架圍束式挫屈束制支撐二十三層鋼構架設計與分析 48
5.1 概述 48
5.2 結構基本說明 48
5.3 含桁架圍束式挫屈束制支撐構架耐震設計 51
5.3.1 ETABS 結構模型介紹 51
5.3.2 設計流程 51
5.3.3 質量與載重設定 52
5.3.4 基本振態與週期 53
5.3.5 設計地震力計算 54
5.3.6 載重組合設定 55
5.3.7 挫屈束制支撐構架容量設計 57
5.3.8 特殊抗彎矩構架耐震設計 60
5.3.9 設計細節建議 62
5.3.10 桁架挫屈束制支撐設計流程 65
5.4 設計結果檢核 68
5.4.1 結構分析法 68
5.4.2 桿件設計結果 71
5.4.3 二元系統受力檢核 72
5.4.4 設計細節檢核 73
5.4.5 桁架圍束式挫屈束制支撐有限元素分析 74
5.5 含桁架圍束式挫屈束制支撐構架數值模型靜力分析 75
5.5.1 PISA3D 結構分析軟體介紹 75
5.5.2 PISA3D 結構模型介紹 76
5.5.3 模態分析 80
5.5.4 非線性靜力側推分析 81
第六章 二十三層鋼結構非線性歷時分析 83
6.1 概述 83
6.2 地震加速度歷時介紹 83
6.2.1 地震紀錄選取與縮放 83
6.2.2 地震加速度歷時擷取 84
6.3 非線性歷時分析結果 86
6.3.1 頂層最大側位移角 86
6.3.2 最大層間側位移角分布 87
6.3.3 構件實驗設計樓層層間位移角驗證 88
6.3.4 層間位移集中因子 88
6.3.5 樓層最大旋轉角 89
6.3.6 樓層剪力分佈與系統超強 89
6.3.7 二元系統之受力比 90
6.3.8 桿件受力結果 91
6.3.9 累積塑性應變量 93
第七章 結論與建議 94
參考文獻 98
附錄 102
dc.language.isozh-TW
dc.subject穩定性分析zh_TW
dc.subject非線性歷時分析zh_TW
dc.subject桁架圍束單元zh_TW
dc.subject挫屈束制支撐zh_TW
dc.subject巨型斜撐zh_TW
dc.subject二元系統zh_TW
dc.subject鋼結構zh_TW
dc.subject反覆加載試驗zh_TW
dc.subjectmega trussen
dc.subjecttruss-confined restraineren
dc.subjectbuckling-restrained braceen
dc.subjectstability analysisen
dc.subjectnonlinear response history analysisen
dc.subjectcyclic loading testen
dc.subjectsteel structureen
dc.subjectdual systemen
dc.title桁架圍束式挫屈束制支撐構架耐震設計分析與試驗研究zh_TW
dc.titleSeismic Design, Tests and Analysis of Steel Frame with TC-BRBsen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭博謙(Po-Chien Hsiao),林保均(Pao-Chun Lin),林瑞良(Jui-Liang Lin),莊明介(Ming-Chieh Chuang)
dc.subject.keyword挫屈束制支撐,桁架圍束單元,穩定性分析,反覆加載試驗,鋼結構,二元系統,巨型斜撐,非線性歷時分析,zh_TW
dc.subject.keywordbuckling-restrained brace,truss-confined restrainer,stability analysis,cyclic loading test,steel structure,dual system,mega truss,nonlinear response history analysis,en
dc.relation.page249
dc.identifier.doi10.6342/NTU202100124
dc.rights.note有償授權
dc.date.accepted2021-01-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2201202113110700.pdf
  未授權公開取用
29.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved