Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74336
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊(SHAO-CHUN LU)
dc.contributor.authorHsiu-I Panen
dc.contributor.author潘秀宜zh_TW
dc.date.accessioned2021-06-17T08:30:27Z-
dc.date.available2019-08-26
dc.date.copyright2019-08-26
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citationAnstee, Q.M., Targher, G., and Day, C.P. (2013). Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10, 330-344.
Antonopoulos, A.S., Margaritis, M., Lee, R., Channon, K., and Antoniades, C. (2012). Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des 18, 1519-1530.
Bancells, C., Canals, F., Benitez, S., Colome, N., Julve, J., Ordonez-Llanos, J., and Sanchez-Quesada, J.L. (2010). Proteomic analysis of electronegative low-density lipoprotein. J Lipid Res 51, 3508-3515.
Bekkering, S., Quintin, J., Joosten, L.A., van der Meer, J.W., Netea, M.G., and Riksen, N.P. (2014). Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol 34, 1731-1738.
Berghe, W.V., De Bosscher, K., Boone, E., Plaisance, S., and Haegeman, G. (1999). The nuclear factor-κB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. Journal of Biological Chemistry 274, 32091-32098.
Biasucci, L.M., Liuzzo, G., Fantuzzi, G., Caligiuri, G., Rebuzzi, A.G., Ginnetti, F., Dinarello, C.A., and Maseri, A. (1999). Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events. Circulation 99, 2079-2084.
Björkhem‐Bergman, L., Lindh, J.D., and Bergman, P. (2011). What is a relevant statin concentration in cell experiments claiming pleiotropic effects? British journal of clinical pharmacology 72, 164-165.
Brereton, C.F., Sutton, C.E., Lalor, S.J., Lavelle, E.C., and Mills, K.H. (2009). Inhibition of ERK MAPK suppresses IL-23-and IL-1-driven IL-17 production and attenuates autoimmune disease. The Journal of Immunology 183, 1715-1723.
Chang, S.-F., Lin, S.-S., Yang, H.-C., Chou, Y.-Y., Gao, J.-I., and Lu, S.-C. (2015). LPS-induced G-CSF expression in macrophages is mediated by ERK2, but not ERK1. PloS one 10, e0129685.
Chavez-Sanchez, L., Chavez-Rueda, K., Legorreta-Haquet, M.V., Zenteno, E., Ledesma-Soto, Y., Montoya-Diaz, E., Tesoro-Cruz, E., Madrid-Miller, A., and Blanco-Favela, F. (2010). The activation of CD14, TLR4, and TLR2 by mmLDL induces IL-1beta, IL-6, and IL-10 secretion in human monocytes and macrophages. Lipids Health Dis 9, 117.
Chen, C.H., Jiang, T., Yang, J.H., Jiang, W., Lu, J., Marathe, G.K., Pownall, H.J., Ballantyne, C.M., McIntyre, T.M., Henry, P.D., et al. (2003). Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 107, 2102-2108.
Cogswell, J.P., Godlevski, M.M., Wisely, G., Clay, W.C., Leesnitzer, L.M., Ways, J.P., and Gray, J.G. (1994). NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. The Journal of Immunology 153, 712-723.
Consortium, I.-R.M.R.A. (2012). The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. The Lancet 379, 1214-1224.
Davies, M.J., Richardson, P.D., Woolf, N., Katz, D.R., and Mann, J. (1993). Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Heart 69, 377-381.
De Castellarnau, C., Sanchez-Quesada, J.L., Benitez, S., Rosa, R., Caveda, L., Vila, L., and Ordonez-Llanos, J. (2000). Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arterioscler Thromb Vasc Biol 20, 2281-2287.
Emerging Risk Factors, C., Kaptoge, S., Di Angelantonio, E., Lowe, G., Pepys, M.B., Thompson, S.G., Collins, R., and Danesh, J. (2010). C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132-140.
Fanola, C.L., Morrow, D.A., Cannon, C.P., Jarolim, P., Lukas, M.A., Bode, C., Hochman, J.S., Goodrich, E.L., Braunwald, E., and O'Donoghue, M.L. (2017). Interleukin-6 and the Risk of Adverse Outcomes in Patients After an Acute Coronary Syndrome: Observations From the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib-Thrombolysis in Myocardial Infarction 52) Trial. J Am Heart Assoc 6.
Frost, J.A., Geppert, T.D., Cobb, M.H., and Feramisco, J.R. (1994). A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras, phorbol 12-myristate 13-acetate, and serum. Proc Natl Acad Sci U S A 91, 3844-3848.
Group, S.S.S.S. (1994). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). The Lancet 344, 1383-1389.
Guo, F., Dong, M., Ren, F., Zhang, C., Li, J., Tao, Z., Yang, J., and Li, G. (2014). Association between local interleukin-6 levels and slow flow/microvascular dysfunction. Journal of thrombosis and thrombolysis 37, 475-482.
Harris, T.B., Ferrucci, L., Tracy, R.P., Corti, M.C., Wacholder, S., Ettinger, W.H., Jr., Heimovitz, H., Cohen, H.J., and Wallace, R. (1999). Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 106, 506-512.
Hsu, J.F., Chou, T.C., Lu, J., Chen, S.H., Chen, F.Y., Chen, C.C., Chen, J.L., Elayda, M., Ballantyne, C.M., Shayani, S., et al. (2014). Low-density lipoprotein electronegativity is a novel cardiometabolic risk factor. PLoS One 9, e107340.
Hu, L.-h., Zhang, T., Shao, Q., Li, D.-d., Jin, S.-x., Nie, P., Yi, J., He, B., and Shen, L.-h. (2012). Atorvastatin suppresses oxidized LDL-induced dendritic cell-like differentiation of RAW264. 7 cells regulated by the p38 MAPK pathway. Molecular and cellular biochemistry 371, 105-113.
Huber, S.A., Sakkinen, P., Conze, D., Hardin, N., and Tracy, R. (1999). Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 19, 2364-2367.
Ito, T., Ikeda, U., Shimpo, M., Ohki, R., Takahashi, M., Yamamoto, K., and Shimada, K. (2002). HMG-CoA reductase inhibitors reduce interleukin-6 synthesis in human vascular smooth muscle cells. Cardiovascular drugs and therapy 16, 121-126.
Kanda, T., and Takahashi, T. (2004). Interleukin-6 and cardiovascular diseases. Jpn Heart J 45, 183-193.
Ke, L.-Y., Engler, D.A., Lu, J., Matsunami, R.K., Chan, H.-C., Wang, G.-J., Yang, C.-Y., Chang, J.-G., and Chen, C.-H. (2011). Chemical composition-oriented receptor selectivity of L5, a naturally occurring atherogenic low-density lipoprotein. Pure and Applied Chemistry 83, 1731-1740.
Kuijk, L.M., Beekman, J.M., Koster, J., Waterham, H.R., Frenkel, J., and Coffer, P.J. (2008a). HMG-CoA reductase inhibition induces IL-1β release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood 112, 3563-3573.
Kuijk, L.M., Mandey, S.H., Schellens, I., Waterham, H.R., Rijkers, G.T., Coffer, P.J., and Frenkel, J. (2008b). Statin synergizes with LPS to induce IL-1β release by THP-1 cells through activation of caspase-1. Molecular immunology 45, 2158-2165.
Kwak, B.R., Mulhaupt, F., and Mach, F. (2003). Atherosclerosis: anti-inflammatory and immunomodulatory activities of statins. Autoimmunity reviews 2, 332-338.
Lai, Y.S., Yang, T.C., Chang, P.Y., Chang, S.F., Ho, S.L., Chen, H.L., and Lu, S.C. (2016). Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. J Nutr Biochem 30, 44-52.
Levitan, I., Volkov, S., and Subbaiah, P.V. (2010). Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 13, 39-75.
Li, Y., Schwabe, R.F., DeVries-Seimon, T., Yao, P.M., Gerbod-Giannone, M.C., Tall, A.R., Davis, R.J., Flavell, R., Brenner, D.A., and Tabas, I. (2005). Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 280, 21763-21772.
Liao, J.K., and Laufs, U. (2005). Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45, 89-118.
Libby, P., Ridker, P.M., and Hansson, G.K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317-325.
Lindmark, E., Diderholm, E., Wallentin, L., and Siegbahn, A. (2001). Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. Jama 286, 2107-2113.
Liu, H., Sidiropoulos, P., Song, G., Pagliari, L.J., Birrer, M.J., Stein, B., Anrather, J., and Pope, R.M. (2000). TNF-α gene expression in macrophages: regulation by NF-κB is independent of c-Jun or C/EBPβ. The Journal of Immunology 164, 4277-4285.
Liu, W., Yin, Y., Zhou, Z., He, M., and Dai, Y. (2014). OxLDL-induced IL-1beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflammation Research 63, 33-43.
Lu, J., Jiang, W., Yang, J.H., Chang, P.Y., Walterscheid, J.P., Chen, H.H., Marcelli, M., Tang, D., Lee, Y.T., Liao, W.S., et al. (2008). Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 57, 158-166.
Luan, Z., Chase, A.J., and Newby, A.C. (2003). Statins inhibit secretion of metalloproteinases-1,-2,-3, and-9 from vascular smooth muscle cells and macrophages. Arteriosclerosis, thrombosis, and vascular biology 23, 769-775.
Minden, A., Lin, A., Smeal, T., Dérijard, B., Cobb, M., Davis, R., and Karin, M. (1994). c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Molecular and cellular biology 14, 6683-6688.
Mougenot, N., Lesnik, P., Ramirez-Gil, J.F., Nataf, P., Diczfalusy, U., Chapman, M.J., and Lechat, P. (1997). Effect of the oxidation state of LDL on the modulation of arterial vasomotor response in vitro. Atherosclerosis 133, 183-192.
Nawawi, H., Osman, N.S., Yusoff, K., and Khalid, B.A. (2003). Reduction in serum levels of adhesion molecules, interleukin-6 and C-reactive protein following short-term low-dose atorvastatin treatment in patients with non-familial hypercholesterolemia. Horm Metab Res 35, 479-485.
Ndlovu, M.N., Van Lint, C., Van Wesemael, K., Callebert, P., Chalbos, D., Haegeman, G., and Berghe, W.V. (2009). Hyperactivated NF-κB and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Molecular and cellular biology 29, 5488-5504.
Nicholls, S.J., Tuzcu, E.M., Sipahi, I., Grasso, A.W., Schoenhagen, P., Hu, T., Wolski, K., Crowe, T., Desai, M.Y., and Hazen, S.L. (2007). Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. Jama 297, 499-508.
Olsnes, C., Olofsson, J., and Aarstad, H. (2011). MAPKs ERK and p38, but not JNK phosphorylation, modulate IL‐6 and TNF‐α secretion following OK‐432 in vitro stimulation of purified human monocytes. Scandinavian journal of immunology 74, 114-125.
Pirillo, A., Norata, G.D., and Catapano, A.L. (2013). LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013, 152786.
Ramirez-Carrozzi, V.R., Nazarian, A.A., Li, C.C., Gore, S.L., Sridharan, R., Imbalzano, A.N., and Smale, S.T. (2006). Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes & development 20, 282-296.
Rezaie-Majd, A., Maca, T., Bucek, R.A., Valent, P., Müller, M.R., Husslein, P., Kashanipour, A., Minar, E., and Baghestanian, M. (2002). Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arteriosclerosis, thrombosis, and vascular biology 22, 1194-1199.
Ridker, P.M. (2016). From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ Res 118, 145-156.
Ridker, P.M., Rifai, N., Stampfer, M.J., and Hennekens, C.H. (2000). Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101, 1767-1772.
Roebuck, K.A. (1999). Regulation of interleukin-8 gene expression. J Interferon Cytokine Res 19, 429-438.
Ross, R. (1999). Atherosclerosis—an inflammatory disease. New England journal of medicine 340, 115-126.
Schachter, M. (2005). Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19, 117-125.
Schieffer, B., Selle, T., Hilfiker, A., Hilfiker-Kleiner, D., Grote, K., Tietge, U.J., Trautwein, C., Luchtefeld, M., Schmittkamp, C., and Heeneman, S. (2004). Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation 110, 3493-3500.
Shepherd, J., Cobbe, S.M., Ford, I., Isles, C.G., Lorimer, A.R., Macfarlane, P.W., McKillop, J.H., and Packard, C.J. (1995). Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. New England Journal of Medicine 333, 1301-1308.
Sundararaj, K.P., Samuvel, D.J., Li, Y., Nareika, A., Slate, E.H., Sanders, J.J., Lopes-Virella, M.F., and Huang, Y. (2008). Simvastatin suppresses LPS-induced MMP-1 expression in U937 mononuclear cells by inhibiting protein isoprenylation-mediated ERK activation. J Leukoc Biol 84, 1120-1129.
Tanaka, T., Narazaki, M., and Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6, a016295.
Tang, D., Lu, J., Walterscheid, J.P., Chen, H.H., Engler, D.A., Sawamura, T., Chang, P.Y., Safi, H.J., Yang, C.Y., and Chen, C.H. (2008). Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1. J Lipid Res 49, 33-47.
Teupser, D., Weber, O., Rao, T.N., Sass, K., Thiery, J., and Fehling, H.J. (2011). No reduction of atherosclerosis in C-reactive protein (CRP)-deficient mice. Journal of Biological Chemistry 286, 6272-6279.
Tousoulis, D., Oikonomou, E., Economou, E.K., Crea, F., and Kaski, J.C. (2016). Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J 37, 1723-1732.
Ueda, A., Ishigatsubo, Y., Okubo, T., and Yoshimura, T. (1997). Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J Biol Chem 272, 31092-31099.
Waehre, T., Yndestad, A., Smith, C., Haug, T., Tunheim, S.H., Gullestad, L., Froland, S.S., Semb, A.G., Aukrust, P., and Damas, J.K. (2004). Increased expression of interleukin-1 in coronary artery disease with downregulatory effects of HMG-CoA reductase inhibitors. Circulation 109, 1966-1972.
Walenbergh, S.M., Koek, G.H., Bieghs, V., and Shiri-Sverdlov, R. (2013). Non-alcoholic steatohepatitis: the role of oxidized low-density lipoproteins. J Hepatol 58, 801-810.
Wang, Y.-C., Hu, Y.-W., Sha, Y.-H., Gao, J.-J., Ma, X., Li, S.-F., Zhao, J.-Y., Qiu, Y.-R., Lu, J.-B., and Huang, C. (2015). Ox-LDL upregulates IL-6 expression by enhancing NF-κB in an IGF2-dependent manner in THP-1 macrophages. Inflammation 38, 2116-2123.
Yang, C.Y., Raya, J.L., Chen, H.H., Chen, C.H., Abe, Y., Pownall, H.J., Taylor, A.A., and Smith, C.V. (2003). Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol 23, 1083-1090.
Yang, T.C., Chang, P.Y., Kuo, T.L., and Lu, S.C. (2017a). Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-kappaB and ERK2 activation. Atherosclerosis 267, 1-9.
Yang, T.C., Chang, P.Y., and Lu, S.C. (2017b). L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol 312, H265-H274.
Yudkin, J.S., Kumari, M., Humphries, S.E., and Mohamed-Ali, V. (2000). Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148, 209-214.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74336-
dc.description.abstract在2016年心血管疾病為世界十大死因之首,動脈粥狀硬化是造成心血管疾病的主因之一。而血液中介白素 (interleukin-6, IL-6) 的濃度對於動脈粥狀硬化及心血管疾病的發生或是預後都扮演重要角色。
LDL(-)是在血液中一種氧化程度較輕微且帶負電性的oxLDL,現今已被人認為是一個心血管疾病的指標。過去研究顯示,LDL(-)被發現存在於動脈粥狀硬化、糖尿病、高膽固醇血脂症以及心肌梗塞患者的血液中。先前實驗室研究發現ST-時段上升心肌梗塞 (STEMI) 病患血液中所分離出的LDL(-)會誘導巨噬細胞產生IL-1β、G-CSF及GM-CSF,並且會增加巨噬細胞IL-1β、TNF-α及IL-6 mRNA表現。而在這個研究我們探討LDL(-)是否會誘導巨噬細胞產生IL-6。結果顯示,與Cu-oxLDL相比,STEMI病人的LDL(-)會誘導巨噬細胞產生更大量的促發炎因子IL-6至胞外,並且LDL(-)會誘導NF-κB及C/EBP-β的活化,而LDL(-)誘導巨噬細胞產生IL-6會在ERK路徑抑制時會大幅被降低。
Statins是臨床上治療心血管疾病的常見用藥,作用為抑制HMG-CoA還原酶(reductase) 來達到降低血液中膽固醇的效果。近年研究發現Statins除了具有降低血液膽固醇的功能之外,還具有抗發炎作用。在臨床上,Statins能夠降低血液中的IL-6及C-反應蛋白 (C-reactive protein, CRP),以及能降低心血管疾病發生和死亡率。第二個主題我們探討Statins是否具有抑制LDL(-)誘導巨噬細胞所產生的IL-6。首先,我們以不同濃度及不同種類的Statins預處理巨噬細胞並加入LDL(-)後測量細胞分泌IL-6的產量。結果顯示,疏水性及親水性Statins皆能夠抑制LDL(-)引起巨噬細胞產生的IL-6。此外,我們也探討了Statins對於LDL(-)誘導巨噬細胞產生IL-1β的影響,結果發現Statins並不會抑制LDL(-)所刺激產生的IL-1β。接著,我們也探討Statins是透過那些途徑來抑制LDL(-)所刺激細胞分泌IL-6。結果顯示,Statins能夠顯著抑制C/EBP-β的表現及活化並降低巨噬細胞IL-6的產量,但是Statins並沒有抑制NF-κB活化的效果。
總結,在我們的研究中發現LDL(-)能夠刺激巨噬細胞產生IL-6,而Statins能夠有效抑制LDL(-)所誘導細胞產生IL-6,並且可能是透過抑制C/EBP-β活化而非抑制NF-κB活化來降低IL-6的產生。本篇論文可以部份解釋為何心血管疾病患者血液中會有較高的IL-6濃度,並且瞭解Statins能夠抗發炎的分子機制。
zh_TW
dc.description.abstractCardiovascular disease (CVD) is a leading cause of death worldwide, and atherosclerosis is one of the main causes of CVD. The concentration of interleukin-6 (IL-6) plays an important role in the development and prognosis of atherosclerosis and cardiovascular disease.
Naturally occurring LDL(-) is a mildly oxidized and negatively charged oxLDL that is now considered an indicator of cardiovascular disease. In past studies, LDL(-) was found present in the blood of patients with atherosclerosis, diabetes, hypercholesterolemia, and myocardial infarction. We have recently reported that LDL(-), isolated from patients with ST-segment elevation myocardial infarction (STEMI), induced production of IL-1β, G-CSF, and GM-CSF, and increases mRNA expression of IL-1β, TNF-α and IL-6 in human macrophages. In this study, we explore whether LDL(-) induces production of IL-6 in macrophages. Our results showed that LDL(-) isolated from STEMI significantly increased IL-6 protein production compared to nLDL and Cu-oxLDL. In addition, LDL (-) induced activation of NF-κB and C/EBP-β in human macrophages. We also found that LDL(-)-induced IL-6 production was significantly reduced when cells were pre-treated with U0126, a MEK inhibitor.
Statins have long been used for the treatment of CVD. In addition to reducing circulating cholesterol levels, statins also exert anti-inflammatory effects. Clinical studies showed that statin reduces plasma levels of IL-6 and C-reactive protein (CRP) and reduces development and mortality of CVD. The second aim of this study is to investigate whether statins inhibit LDL(-)-induced IL-6 production in macrophages. We pretreated macrophages with different concentrations and types of Statins and then LDL(-) was added and incubated for 24 h, the levels of IL-6 were determined by ELISA . The results show that both hydrophobic and hydrophilic Statins can inhibit the LDL(-)-induced IL-6 production in human macrophages. However, Statins did not inhibit LDL(-)-induced IL-1β production. Furthermore, we showed that Statins suppressed production of IL-6 probably through inhibiting C/EBP-β but not NF-κB activation.
In summary, we found that LDL(-) significantly increased IL-6 protein production, and Statins inhibited LDL(-)-induced IL-6 through inhibiting C/EBP-β but not NF-κB in human macrophages. These results can partly explain that patients with STEMI have higher levels of plasma IL-6, and provide possible molecular mechanisms for the anti-inflammatory effects of statins.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:30:27Z (GMT). No. of bitstreams: 1
ntu-108-R06442030-1.pdf: 2579022 bytes, checksum: 3f8425bf0e6da3c61334f5efaac14a0a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
國立臺灣大學醫學院生物化學暨分子生物學研究所 1
口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖表目錄 ix
第一章、緒論 1
第一節 文獻回顧 2
一、 動脈粥狀硬化 (Atherosclerosis) 2
二、 細胞激素interleukin-6 (IL-6) 與心血管疾病 3
三、 氧化型低密度脂蛋白 (oxidized LDL, oxLDL) 和陰電性低密度脂蛋白(electronegative LDL, LDL(-)) 5
四、 Statins及心血管疾病 6
第二節 研究動機與實驗目的 8
第二章、材料方法 9
第一節 實驗材料 10
一、 細胞培養 12
二、 分離脂蛋白 12
三、 銅離子誘導低密度脂蛋白氧化 (Cu-oxLDL) 13
四、 酵素結合免疫吸附法 (Enzyme-Linked ImmunoSorbent Assay, ELISA) 13
五、 細胞存活率分析 14
六、 細胞 mRNA 表現的分析 14
七、 西方點墨分析法 16
八、 質體的建構 19
九、 統計分析 23
第三章、實驗結果 24
第一節 人類 LDL(-) 會誘導巨噬細胞產生IL-6,而native LDL和Cu-oxLDL不會 25
第二節 LDL(-)對於巨噬細胞中IL-6啟動子上轉錄因子的影響 25
第三節 LDL(-) 引起巨噬細胞產生IL-6的路徑 26
第四節 疏水性、親水性Statins以及LDL(-) 對於巨噬細胞存活率之影響 26
第五節 Statins在巨噬細胞中顯著抑制LDL(-) 所誘導產生IL-6 26
第六節 Statins在巨噬細胞中不會抑制LDL(-) 所誘導產生IL-1β 27
第七節 Statins 在巨噬細胞中影響IL-6及C/EBP-β的基因表現 27
第八節 Statins在巨噬細胞中影響NF-κB之磷酸化程度 28
第九節 Statins在巨噬細胞中影響C/EBP-β之磷酸化程度 28
第四章、討論 30
第一節 LDL(-)誘導巨噬細胞產生促發炎因子IL-6較Cu-oxLDL更顯著 31
第二節 LDL(-)會活化IL-6啟動子上轉錄因子NF-κB以及C/EBP-β 32
第三節 LDL(-)誘導巨噬細胞產生IL-6受ERK1/2路徑調控 33
第四節 Statins能夠抑制LDL(-)誘導巨噬細胞產生IL-6 33
第五節 Statins不會抑制LDL(-)誘導巨噬細胞產生IL-1β 34
第六節 Statins會降低LDL(-)誘導巨噬細胞表現IL-6及C/EBP-β mRNA 35
第七節 Statins降低LDL(-)誘導巨噬細胞產生IL-6的機制 35
第八節 總結 36
第五章、圖表 37
參考文獻 48
dc.language.isozh-TW
dc.subjectC/EBP-βzh_TW
dc.subject心血管疾病zh_TW
dc.subject動脈粥狀硬化zh_TW
dc.subjectStatinzh_TW
dc.subject巨噬細胞zh_TW
dc.subject陰電性低密度脂蛋白zh_TW
dc.subject氧化低密度脂蛋白zh_TW
dc.subject介白素-6zh_TW
dc.subjectNF-κBzh_TW
dc.subjectNF-κBen
dc.subjectCardiovascular diseaseen
dc.subjectmacrophagesen
dc.subjectLDL(-)en
dc.subjectoxLDLen
dc.subjectIL-6en
dc.subjectAtherosclerosisen
dc.subjectC/EBP-βen
dc.subjectStatinen
dc.titleStatins 對由陰電性低密度脂蛋白引起巨噬細胞介白素-6產生的影響zh_TW
dc.titleThe effects of Statins on electronegative LDL-induced interleukin-6 in human macrophagesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張博淵(PO-YUAN CHANG),李啟明(CHII-MING LEE),李安生(An-Sheng Lee)
dc.subject.keyword動脈粥狀硬化,心血管疾病,巨噬細胞,陰電性低密度脂蛋白,氧化低密度脂蛋白,介白素-6,NF-κB,C/EBP-β,Statin,zh_TW
dc.subject.keywordAtherosclerosis,Cardiovascular disease,macrophages,LDL(-),oxLDL,IL-6,NF-κB,C/EBP-β,Statin,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201903023
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved