Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宛珊
dc.contributor.authorChi-Hao Huangen
dc.contributor.author黃啓豪zh_TW
dc.date.accessioned2021-06-17T08:30:24Z-
dc.date.available2019-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citationBolton Seed, H., Tokimatsu, K., Harder, L., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(12), 1425-1445.
Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., . . . Grobler, J. (2013). API design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv.
Di, C., Yang, X., & Wang, X. (2014). A four-stage hybrid model for hydrological time series forecasting. PloS one, 9(8), e104663.
Franceschini, S., Tsai, C., & Marani, M. (2012). Point estimate methods based on Taylor Series Expansion–The perturbance moments method–A more coherent derivation of the second order statistical moment. Applied Mathematical Modelling, 36(11), 5445-5454.
Govindaraju, R. S. (2000a). Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123.
Govindaraju, R. S. (2000b). Artificial neural networks in hydrology. II: Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124-137.
Hsiao, Y.-R. (2018). Characterization of Nonstationary and Nonlinear Hydrologic, Environmental and Epidemic Time Series Based on Empirical Mode Decomposition (EMD)-based Algorithms and Time-dependent Intrinsic Correlation (TDIC). (Master), National Taiwan University,
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Sciences, E. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. 454(1971), 903-995.
Huang, N. E., & Wu, Z. J. R. o. g. (2008). A review on Hilbert‐Huang transform: Method and its applications to geophysical studies. 46(2).
Hwang, J.-h., Yang, C.-w., & Chen, C.-h. (2005). Simplified Methods for Assessing Liquefaction Potential of Soils by Using Hyperbolic Cyclic Resistance Curves. Sino-geotechnics, 103, 56-64.
Hwang, J.-H., Yang, C.-W., & Chen, C.-H. (2005). Simplified Methods for Assessing Liquefaction Potential of Soils by Using Hyperbolic Cyclic Resistance Curves. Sino-geotechnics, 103, 53-64.
Iwasaki, T., Tokida, K., & Tatsuoka, F. (1981). Soil liquefaction potential evaluation with use of the simplified procedure.
Jian, C., Kwang, P. K., & Yew, Y. K. (2005). Geotechnical Engineering For Disaster Mitigation And Rehabilitation-Proceedings Of The International Conference (With Cd-rom): World Scientific.
Kao, D.-W. (2018). Application of Perturbance Moment Method to the prediction of suspended sediment concentration in Xindian river and its associated uncertainty. (Master), National Taiwan University,
Kisi, O., & Kerem Cigizoglu, H. (2007). Comparison of different ANN techniques in river flow prediction. Civil Engineering and Environmental Systems 24(3), 211-231.
Lee, Y.-F. (2007). An evaluation method of liquefaction probability based on the reliability theory. (PhD), National Cheng Kung University,
Mays, L. W., & Tung, Y.-K. (2002). Hydrosystems engineering and management: Water Resources Publication.
Phoon, K.-K., Kulhawy, F., & Grigoriu, M. J. R. T. (1995). Reliability-based design of foundations for transmission line structures. 105000.
Phoon, K. K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian geotechnical journal, 36(4), 612-624.
Robertson, P. K., & Wride, C. E. (1997). Cyclic liquefaction and its evaluation based on the SPT and CPT (1088-3800). Retrieved from
Seed, R. B., & Harder, L. F. (1990). SPT-Based Analysis of Cyclic Pore Pressure Generation and Undrained Residual Strength.
Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and review. International journal of forecasting, 16(4), 437-450.
Tokimatsu, K., & Yoshimi, Y. (1983). Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, 23(4), 56-74.
Tung, Y.-K., & Yen, B.-C. (2005). Hydrosystems engineering uncertainty analysis.
Ur Rehman, N., & Mandic, D. P. (2010). Empirical mode decomposition for trivariate signals. IEEE transactions on signal processing, 58(3), 1059-1068.
Ur Rehman, N., & Mandic, D. P. (2011). Filter bank property of multivariate empirical mode decomposition. IEEE transactions on signal processing, 59(5), 2421-2426.
Ur Rehman, N., Park, C., Huang, N. E., & Mandic, D. P. (2013). EMD via MEMD: multivariate noise-aided computation of standard EMD. Advances in adaptive data analysis, 5(02), 1350007.
Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC bioinformatics, 7(1), 91.
Wang, W.-c., Chau, K.-w., Qiu, L., & Chen, Y.-b. J. E. r. (2015). Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. 139, 46-54.
Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1-41.
Yeh, J.-R., Shieh, J.-S., & Huang, N. E. (2010). Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Advances in adaptive data analysis, 2(02), 135-156.
Youd, T. L., & Idriss, I. M. (1997). Proceedings of the NCEER workshop on evaluation of liquefaction resistance of soils.
Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical geoenvironmental engineering, 127(4), 297-313.
Zwilling, D., Leete, J., & Rongitsch, B. (1989). Understanding Ground Water Level Trends: A Key to Managing Water Use: a Historical Summary of Ground Water Levels and Trends: Division of Waters, Minnesota Department of Natural Resources.
日本道路協會JRA. (1990). 道路橋示方書.同解說,V耐震設計編.
日本道路協會JRA. (1996). 道路橋示方書.同解說,V耐震設計編.
Central Geological Survey, Ministry of Economic Affairs. (2011). The geology and geohazard prevention for the Taipei Basin.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74335-
dc.description.abstract2011年3月11日,日本發生東北地方太平洋近海地震,與其伴隨而來的海嘯與餘震所引發的大規模災害,官方將其稱為東日本大震災。其中,地震所引發的土壤液化為史上規模最大,甚至距離震央三、四百公里之遠的東京附近地區,至今仍有部分液化區仍在整建。臺北盆地是台灣的行政與經濟重心,且與東京均位於環太平洋地震帶,災害防範是十分重要的課題。
由於臺北盆地地質環境特殊,大半面積均存在土壤液化的可能,而土壤液化潛勢圖能夠直觀的反應可能的液化情形,且解讀容易與快速,因此廣泛的使用在都市與防災規劃中。
許多自然災害發生的可能性是一種不確定性的表現,土壤液化的發生受地震、土壤特性與評估模式不確定性的影響,本質是機率的,而非「會」與「不會」二元式簡單判定。土壤液化潛勢圖是由該地之地質鑽探資料、地震資料與地下水位資料計算而得,直觀上應該具有一定程度的隨機性。傳統上,土壤液化潛勢圖為定率分析,無法展現出其隨機性。因此,本研究著重在土壤液化潛勢圖的改良,先是決定地質鑽探資料之中,土壤參數的不確定性;再使用加噪多變數經驗模態分解法,處理地下水觀測資料之時間序列,獲得其本質模態函數與特徵時間尺度,進而使用人工神經網路預測其未來趨勢,是為NAMEMD-ANN預測模型,並針對特徵時間尺度評估其不確定性。最後,利用擾動差法,將定率土壤液化潛勢圖轉換為機率土壤液化潛勢圖,並計算出台北每一行政區具有液化風險之面積比例,與其正、負一標準差情況下之差異比例。
於實際應用上,本研究除了提供機率土壤液化潛勢圖的建立方法,更可以對其進行預測,得到不同時間、不同機率的土壤液化潛勢圖,期盼能為台灣土壤液化之防災規劃、政策決定與相關研究帶來貢獻。
zh_TW
dc.description.abstractThe primary contribution of this paper involves the development of a probabilistic soil liquefaction potential mapping in Taipei area using uncertainty analysis and combining several different methods, i.e. the Hyperbolic Function Method (HBF), the Artificial Neural Network (ANN) model, the Noise-assisted Multivariate Empirical Mode Decomposition (NAMEMD) algorithm, and the Perturbance Moment Method (PMM). The Hyperbolic Function Method (HBF) is employed to evaluate the soil liquefaction potential as its equations are simple, it is constructed using the Taiwan database and widely adopted by the government in Taiwan. Moreover, the Artificial Neural Network (ANN) model coupled with the Noise-assisted Multivariate Empirical Mode Decomposition (NAMEMD) algorithm is proposed for analyzing and forecasting the ground water level. First, based on the previous research work and experiments, the geotechnical data and earthquake data are transformed into random variables. Then, the proposed NAMEMD-ANN model is applied to the groundwater level data to investigate the characteristic time scales, and the forecasting time and the analysis length can be determined by the characteristic time scales. Furthermore, the Pertubances Moment Method (PMM) and Monte Carlo methods (MC) are used to assess the statistical moments and probability of output, the Liquefaction Potential Index (LPI). Finally, the probabilistic soil liquefaction potential mapping can be plotted by Kriging. The proposed modeling framework was applied to the Taipei Basin and the results which include the LPI mapping, the contour of exceedance probability, the percentage of areas with a high probability to liquefy in different period are demonstrated and discussed in this paper.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:30:24Z (GMT). No. of bitstreams: 1
ntu-108-R06521308-1.pdf: 17666215 bytes, checksum: 10f2aedd9db0768cce45105c9aeb4014 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 #
致謝 I
中文摘要 II
Abstract IV
Content VI
Figure Content VIII
Table Content XI
1. Introduction 1
1.1 Problem Statement 1
1.2 Motivation and Objectives of this Study 5
1.3 Overview of Thesis 7
2. Literature Review 10
2.1 Assessment of Soil Liquefaction 10
2.2 Artificial Neural Network (ANN) 16
2.3 Random Variables and The Coefficient of Variation 18
2.4 Sources and Analysis of Uncertainty 21
3. Methodology 27
3.1 Soil Liquefaction Model 27
3.1.1 Hyperbolic Function Method (HBF) 27
3.1.2 Soil Liquefaction Potential Index (LPI) 31
3.2 NAMEMD-ANN Model 33
3.2.1 Empirical Mode Decomposition (EMD) 36
3.2.2 Ensemble Empirical Mode Decomposition (EEMD) 41
3.2.3 Multivariate Empirical Mode Decomposition (MEMD) 42
3.2.4 Noise-assisted MEMD (NA-MEMD) 44
3.2.5 Artificial Neural Network (ANN) 46
3.3 Uncertainty Analysis Method 50
3.3.1 Scale of fluctuation 50
3.3.2 Perturbance Moment Method (PMM) 52
4. Model Development and Application 55
4.1 Data Processing 55
4.2 Statistical Moment Analysis 68
4.3 Soil Liquefaction Potential 89
4.4 Probabilistic Soil Liquefaction Potential Mapping 93
5. Conclusion 107
5.1 Summary of Research 107
5.2 Future Work 108
6. References 110
7. Appendix 115
dc.language.isoen
dc.title機率土壤液化潛勢圖之建構與應用zh_TW
dc.titleDevelopment of Probabilistic Soil Liquefaction Potential Mapsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee卿建業,余化龍,周瑞生
dc.subject.keyword不確定性分析,雙曲線液化強度曲線法,多變數經驗模態分解,人工神經網路,擾動差法,土壤液化,zh_TW
dc.subject.keyworduncertainty,Perturbance Moment Method (PMM),Noise-Assisted Multivariate Empirical Mode Decomposition (NAMEMD),Artificial Neural Networks (ANN),Hyperbolic Function Method (HBF),soil liquefaction.,en
dc.relation.page126
dc.identifier.doi10.6342/NTU201903244
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
17.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved