Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74324
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰(Shiang-Tai Lin)
dc.contributor.authorLee-Shin Chuen
dc.contributor.author朱力行zh_TW
dc.date.accessioned2021-06-17T08:29:52Z-
dc.date.available2020-08-15
dc.date.copyright2019-08-15
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation1. Kuhs, W. F.; Staykova, D. K.; Salamatin, A. N., Formation of methane hydrate from polydisperse ice powders. J. Phys. Chem. B 2006, 110 (26), 13283-13295.
2. Komatsu, H.; Ota, M.; Smith, R. L.; Inomata, H., Review of CO2-CH4 clathrate hydrate replacement reaction laboratory studies - Properties and kinetics. J. Taiwan Inst. Chem. Eng. 2013, 44 (4), 517-537.
3. Zhao, J. F.; Xu, K.; Song, Y. C.; Liu, W. G.; Lam, W.; Liu, Y.; Xue, K. H.; Zhu, Y. M.; Yu, X. C.; Li, Q. P., A Review on Research on Replacement of CH4 in Natural Gas Hydrates by Use of CO2. Energies 2012, 5 (2), 399-419.
4. Baldwin, B. A.; Stevens, J.; Howard, J. J.; Graue, A.; Kvamme, B.; Aspenes, E.; Ersland, G.; Husebo, J.; Zornes, D. R., Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media. Magn. Reson. Imaging 2009, 27 (5), 720-726.
5. Kvamme, B.; Graue, A.; Buanes, T.; Kumetsoua, T.; Ersland, G., Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers. Int. J. Greenh. Gas Control 2007, 1 (2), 236-246.
6. Yuan, Q.; Sun, C. Y.; Yang, X.; Ma, P. C.; Ma, Z. W.; Liu, B.; Ma, Q. L.; Yang, L. Y.; Chen, G. J., Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor. Energy 2012, 40 (1), 47-58.
7. Jung, J. W.; Espinoza, D. N.; Santamarina, J. C., Properties and phenomena relevant to CH4‐CO2 replacement in hydrate‐bearing sediments. Journal of Geophysical Research: Solid Earth (1978–2012) 2010, 115 (B10).
8. Ors, O.; Sinayuc, C., An experimental study on the CO2-CH4 swap process between gaseous CO2 and CH4 hydrate in porous media. J. Pet. Sci. Eng. 2014, 119, 156-162.
9. Zhou, X. B.; Liang, D. Q.; Liang, S.; Yi, L. Z.; Lin, F. H., Recovering CH4 from Natural Gas Hydrates with the Injection of CO2-N-2 Gas Mixtures. Energy Fuels 2015, 29 (2), 1099-1106.
10. Lee, Y.; Kim, Y.; Lee, J.; Lee, H.; Seo, Y., CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter. Appl. Energy 2015, 150, 120-127.
11. Ota, M.; Abe, Y.; Watanabe, M.; Smith, R. L.; Inomata, H., Methane recovery from methane hydrate using pressurized CO2. Fluid Phase Equilib. 2005, 228-229, 553-559.
12. Ota, M.; Morohashi, K.; Abe, Y.; Watanabe, M.; Smith, J. R. L.; Inomata, H., Replacement of CH4 in the hydrate by use of liquid CO2. Energy Conversion and Management 2005, 46 (11), 1680-1691.
13. Zhou, X.; Fan, S.; Liang, D.; Du, J., Replacement of Methane from Quartz Sand-Bearing Hydrate with Carbon Dioxide-in-Water Emulsion. Energy Fuels 2008, 22 (3), 1759-1764.
14. Boswell, R.; Schoderbek, D.; Collett, T. S.; Ohtsuki, S.; White, M.; Anderson, B. J., The Inik Sikumi Field Experiment, Alaska North Slope: Design, Operations, and Implications for CO2-CH4 Exchange in Gas Hydrate Reservoirs. Energy Fuels 2017, 31 (1), 140-153.
15. Schoderbek, D.; Boswell, R., Ignik Sikumi #1, Gas Hydrate Test Well, Successfully Installed on the Alaska North Slope. Fire ice 2011, 1-5.
16. Falenty, A.; Salamatin, A. N.; Kuhs, W. F., Kinetics of CO2-Hydrate Formation from Ice Powders: Data Summary and Modeling Extended to Low Temperatures. J. Phys. Chem. C 2013, 117 (16), 8443-8457.
17. Salamatin, A. N.; Falenty, A.; Hansen, T. C.; Kuhs, W. F., Guest Migration Revealed in CO2 Clathrate Hydrates. Energy Fuels 2015, 29 (9), 5681-5691.
18. Salamatin, A. N.; Falenty, A.; Kuhs, W. F., Diffusion Model for Gas Replacement in an Isostructural CH4-CO2 Hydrate System. J. Phys. Chem. C 2017, 121 (33), 17603-17616.
19. Demurov, A.; Radhakrishnan, R.; Trout, B. L., Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. J. Chem. Phys. 2002, 116 (2), 702-709.
20. Peters, B.; Zimmermann, N. E. R.; Beckham, G. T.; Tester, J. W.; Trout, B. L., Path Sampling Calculation of Methane Diffusivity in Natural Gas Hydrates from a Water-Vacancy Assisted Mechanism. J. Am. Chem. Soc. 2008, 130 (51), 17342-17350.
21. Lo, H.; Lee, M. T.; Lin, S. T., Water Vacancy Driven Diffusion in Clathrate Hydrates: Molecular Dynamics Simulation Study. J. Phys. Chem. C 2017, 121 (15), 8280-8289.
22. Liang, S.; Kusalik, P. G., The Mobility of Water Molecules through Gas Hydrates. J. Am. Chem. Soc. 2011, 133 (6), 1870-1876.
23. Liang, S.; Liang, D. Q.; Wu, N. Y.; Yi, L. Z.; Hu, G. W., Molecular Mechanisms of Gas Diffusion in CO2 Hydrates. J. Phys. Chem. C 2016, 120 (30), 16298-16304.
24. Waage, M. H.; Trinh, T. T.; Erp, T. S. v., Diffusion of gas mixtures in the sI hydrate structure. The Journal of Chemical Physics 2018, 148 (21), 214701.
25. Krishna, R.; Wesselingh, J. A., Review article number 50 - The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 1997, 52 (6), 861-911.
26. Krishna, R., Describing the Diffusion of Guest Molecules Inside Porous Structures. J. Phys. Chem. C 2009, 113 (46), 19756-19781.
27. Karger, J.; Ruthven, D. M., Diffusion in nanoporous materials: fundamental principles, insights and challenges. New J. Chem. 2016, 40 (5), 4027-4048.
28. Coppens, M.-O.; Bell, A. T.; Chakraborty, A. K., Dynamic Monte-Carlo and mean-field study of the effect of strong adsorption sites on self-diffusion in zeolites. Chemical Engineering Science 1999, 54 (15), 3455-3463.
29. Coppens, M. O.; Iyengar, V., Testing the consistency of the Maxwell-Stefan formulation when predicting self-diffusion in zeolites with strong adsorption sites. Nanotechnology 2005, 16 (7), S442-S448.
30. Clathrate Solutions. In Advances in Chemical Physics.
31. Jörg Kärger, D. M. R., Diffusion in zeolites and other microporous solids. 1992.
32. Ruthven, D. M., Principles of Adsorption and Adsorption Processes. 1984.
33. Krishna, R.; Wesselingh, J. A., The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 1997, 52 (6), 861-911.
34. Kärger, J., Some remarks on the straight and cross-coefficients in irreversible thermodynamics of surface flow and on the relation between diffusion and selfdiffusion. Surf. Sci. 1973, 36 (2), 797-801.
35. Sundaram, N.; Yang, R. T., Binary diffusion of unequal sized molecules in zeolites. Chem. Eng. Sci. 2000, 55 (10), 1747-1754.
36. Sanborn, M. J.; Snurr, R. Q., Diffusion of binary mixtures of CF4 and n-alkanes in faujasite. Separation and Purification Technology 2000, 20 (1), 1-13.
37. Krishna, R.; Baur, R., Modelling issues in zeolite based separation processes. Separation and Purification Technology 2003, 33 (3), 213-254.
38. Kapteijn, F.; Moulijn, J. A.; Krishna, R., The generalized Maxwell–Stefan model for diffusion in zeolites:: sorbate molecules with different saturation loadings. Chem. Eng. Sci. 2000, 55 (15), 2923-2930.
39. Krishna, R.; Paschek, D., Separation of hydrocarbon mixtures using zeolite membranes: a modelling approach combining molecular simulations with the Maxwell–Stefan theory. Separation and Purification Technology 2000, 21 (1), 111-136.
40. Bortz, A. B.; Kalos, M. H.; Lebowitz, J. L., NEW ALGORITHM FOR MONTE-CARLO SIMULATION OF ISING SPIN SYSTEMS. J. Comput. Phys. 1975, 17 (1), 10-18.
41. Voter, A. F., Introduction to the Kinetic Monte Carlo Method. Springer: 2007; Vol. 235.
42. Battaile, C. C., The kinetic Monte Carlo method: Foundation, implementation, and application. Comput. Meth. Appl. Mech. Eng. 2008, 197 (41-42), 3386-3398.
43. Paschek, D.; Krishna, R., Inter-relation between self- and jump-diffusivities in zeolites. Chem. Phys. Lett. 2001, 333 (3-4), 278-284.
44. Reed, D. A.; Ehrlich, G., SURFACE-DIFFUSION, ATOMIC JUMP RATES AND THERMODYNAMICS. Surf. Sci. 1981, 102 (2-3), 588-609.
45. Uebing, C.; Pereyra, V.; Zgrablich, G., Diffusion of interacting lattice gases on heterogeneous surfaces with simple topographies. Surf. Sci. 1996, 366 (1), 185-192.
46. Chempath, S.; Krishna, R.; Snurr, R. Q., Nonequilibrium Molecular Dynamics Simulations of Diffusion of Binary Mixtures Containing Short n-Alkanes in Faujasite. The Journal of Physical Chemistry B 2004, 108 (35), 13481-13491.
47. Jobic, H.; Theodorou, D. N., Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites. Microporous Mesoporous Mat. 2007, 102 (1), 21-50.
48. Dubbeldam, D.; Snurr, R. Q., Recent developments in the molecular modeling of diffusion in nanoporous materials. Molecular Simulation 2007, 33 (4-5), 305-325.
49. Krishna, R.; van Baten, J. M., Onsager coefficients for binary mixture diffusion in nanopores. Chem. Eng. Sci. 2008, 63 (12), 3120-3140.
50. Skoulidas, A. I.; Sholl, D. S.; Krishna, R., Correlation effects in diffusion of CH4/CF4 mixtures in MFI zeolite. A study linking MD simulations with the Maxwell-Stefan formulation. Langmuir 2003, 19 (19), 7977-7988.
51. Sanborn, M. J.; Snurr, R. Q., Predicting membrane flux of CH4 and CF4 mixtures in Faujasite from molecular simulations. Aiche J. 2001, 47 (9), 2032-2041.
52. Chen, H.; Sholl, D. S., Efficient Simulation of Binary Adsorption Isotherms Using Transition Matrix Monte Carlo. Langmuir 2006, 22 (2), 709-716.
53. Sum, A. K.; Burruss, R. C.; Sloan, E. D., Measurement of clathrate hydrates via Raman spectroscopy. J. Phys. Chem. B 1997, 101 (38), 7371-7377.
54. Uchida, T.; Hirano, T.; Ebinuma, T.; Narita, H.; Gohara, K.; Mae, S.; Matsumoto, R., Raman spectroscopic determination of hydration number of methane hydrates. Aiche J. 1999, 45 (12), 2641-2645.
55. Cao, Z.; Tester, J. W.; Sparks, K. A.; Trout, B. L., Molecular Computations Using Robust Hydrocarbon−Water Potentials for Predicting Gas Hydrate Phase Equilibria. The Journal of Physical Chemistry B 2001, 105 (44), 10950-10960.
56. Klauda, J. B.; Sandler, S. I., Ab Initio Intermolecular Potentials for Gas Hydrates and Their Predictions. The Journal of Physical Chemistry B 2002, 106 (22), 5722-5732.
57. Klauda, J. B.; Sandler, S. I., Phase behavior of clathrate hydrates: a model for single and multiple gas component hydrates. Chemical Engineering Science 2003, 58 (1), 27-41.
58. Sun, R.; Duan, Z., Prediction of CH4 and CO2 hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials. Geochimica et Cosmochimica Acta 2005, 69 (18), 4411-4424.
59. Brumby, P. E.; Yuhara, D.; Wu, D. T.; Sum, A. K.; Yasuoka, K., Cage occupancy of methane hydrates from Gibbs ensemble Monte Carlo simulations. Fluid Phase Equilib. 2016, 413, 242-248.
60. Waage, M. H.; Vlugt, T. J. H.; Kjelstrup, S., Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations. J. Phys. Chem. B 2017, 121 (30), 7336-7350.
61. Jensen, L.; Thomsen, K.; von Solms, N.; Wierzchowski, S.; Walsh, M. R.; Koh, C. A.; Sloan, E. D.; Wu, D. T.; Sum, A. K., Calculation of Liquid Water−Hydrate−Methane Vapor Phase Equilibria from Molecular Simulations. The Journal of Physical Chemistry B 2010, 114 (17), 5775-5782.
62. Bhawangirkar, D. R.; Adhikari, J.; Sangwai, J. S., Thermodynamic modeling of phase equilibria of clathrate hydrates formed from CH4, CO2, C2H6, N-2 and C3H8, with different equations of state. J. Chem. Thermodyn. 2018, 117, 180-192.
63. Parrish, W. R.; Prausnitz, J. M., Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures. Industrial & Engineering Chemistry Process Design and Development 1972, 11 (1), 26-35.
64. Krishna, R.; Paschek, D.; Baur, R., Modeling the occupancy dependence of diffusivities in zeolites. Microporous Mesoporous Mat. 2004, 76 (1-3), 233-246.
65. Bjerrum, N., Structure and Properties of Ice. Science 1952, 115 (2989), 385-390.
66. Kuhs, W. F.; Klapproth, A.; Gotthardt, F.; Techmer, K.; Heinrichs, T., The formation of meso- and macroporous gas hydrates. Geophysical Research Letters 2000, 27 (18), 2929-2932.
67. Stern, L. A.; Circone, S.; Kirby, S. H.; Durham, W. B., Anomalous Preservation of Pure Methane Hydrate at 1 atm. The Journal of Physical Chemistry B 2001, 105 (9), 1756-1762.
68. Van Den Broeke, L. J. P.; Krishna, R., Experimental verification of the Maxwell-Stefan theory for micropore diffusion. Chem. Eng. Sci. 1995, 50 (16), 2507-2522.
69. Krishna, R.; van Baten, J. M., Unified Maxwell–Stefan description of binary mixture diffusion in micro- and meso-porous materials. Chem. Eng. Sci. 2009, 64 (13), 3159-3178.
70. Nakano, S.; Ohgaki, K., Relative Cage-Occupancy of CO<SUB>2</SUB>-Methane Mixed Hydrate. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2000, 33 (3), 554-556.
71. Munck, J.; Skjold-Jørgensen, S.; Rasmussen, P., Computations of the formation of gas hydrates. Chem. Eng. Sci. 1988, 43 (10), 2661-2672.
72. Anderson, B. J.; Bazant, M. Z.; Tester, J. W.; Trout, B. L., Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems. The Journal of Physical Chemistry B 2005, 109 (16), 8153-8163.
73. Hsieh, M.-K.; Yeh, Y.-T.; Chen, Y.-P.; Chen, P.-C.; Lin, S.-T.; Chen, L.-J., Predictive Method for the Change in Equilibrium Conditions of Gas Hydrates with Addition of Inhibitors and Electrolytes. Industrial & Engineering Chemistry Research 2012, 51 (5), 2456-2469.
74. Lakhlifi, A.; Dahoo, P. R.; Picaud, S.; Mousis, O., A simple van’t Hoff law for calculating Langmuir constants in clathrate hydrates. Chemical Physics 2015, 448, 53-60.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74324-
dc.description.abstract客體分子在籠形水合物晶格中的擴散被認為是一系列的客體分子躍遷,從一個水籠子到另一個相鄰的空水籠子,其由自然形成之水洞促進並且在躍遷的過程中沒有顯著的晶格重構。在這項工作中,我們提出了一個解析模型,可以根據客體分子躍遷的速率決定sI籠形水合物籠中氣體分子的平衡分布和擴散係數,不須藉由實驗得到之數據。此外,我們利用動力學蒙特卡羅模擬以驗證此解析模型。我們由解析模型得到之客體分子平衡分布、輸送(transport)和跳躍(Maxwell-Stefan)擴散係數以及熱力學校正因子皆與模擬結果非常一致。除此之外我們還可以知道影響輸送性質的主要躍遷路徑。我們將利用平衡路徑採樣計算之客體分子躍遷的速率常數代入此解析模型,可以得到在溫度為275 K時甲烷之輸送擴散係數為5.06×10-14 m2/s,這與最近在相同溫度下的實驗測量值4.00×10-14 m2/s非常接近。此外,此解析模型可用於描述龍形水和物中客體分子和外界交換以及在晶體內擴散的過程,可以用於計算二氧化碳置換天然氣水合物儲集層中甲烷的速率。zh_TW
dc.description.abstractGuest migration in clathrate hydrates is a slow but important process for reaching thermodynamic equilibrium. The transport of guest molecules in a hydrate lattice is considered as a series of hopping events from an occupied cage to an empty neighboring cage facilitated by water vacancies and without significant lattice restructuring in the bulk. In this work, we developed an analytical model for determining the equilibrium distribution and the diffusivity of gas molecules in the cages of sI clathrate hydrate based on their hopping rate. Furthermore, kinetic Monte Carlo simulations were performed to verify the analytical model. The equilibrium occupancies, transport (Fickian) and jump (Maxwell-Stefan) diffusion coefficients, and the thermodynamic correction factors determined from the analytical model are in good agreement with the simulation results. The predominant hopping pathway for the transport properties can also be obtained. Using the hopping rate constants determined based on equilibrium path sampling calculations, we obtain methane transport-diffusion coefficient at 275 K to be 5.06×10-14 m2/s, which is in good agreement with the recent experimental measurements (4.00×10-14 m2/s at 275 K). In addition, the analytical model is useful for modeling the solid-state guest exchange process, which is of great importance in the replacement of methane with CO2 in natural gas hydrate reservoirs.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:29:52Z (GMT). No. of bitstreams: 1
ntu-108-R06524009-1.pdf: 7078875 bytes, checksum: 2c0103d447b660f3b95883f87d8e2dfb (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables xii
1. Introduction 1
2. Theory 5
2.1 Molecular Model 5
2.2 Equilibrium Guest Distribution in sI Hydrate Lattice 6
2.3 Transport Properties of Guest Molecules 8
2.4 Kinetic Monte Carlo Method 12
2.5 Self-diffusivity 12
2.6 Jump-diffusivity 13
2.7 Onsager Coefficient 13
2.8 Thermodynamic Correction Factor 13
3. Computational Details 15
3.1 Simulation Systems 15
3.2 Rate Constants 16
3.3 Simulation Details 16
4. Results and Discussion 19
4.1 Single Guest sI Hydrate Systems 19
4.1.1 Equilibrium Guest Distribution 19
4.1.2 Transport Properties of Guest Molecules 23
4.1.3 Contribution of Hopping Events from the Different Pathways 25
4.1.4 Self-Diffusivity of Guest Molecules 26
4.1.5 Prediction of CH4 Transport Diffusivity under Experimental Conditions 28
4.2 Mixed Identical Guests sI Hydrate Systems 33
4.2.1 Equilibrium Guest Distribution 34
4.2.2 Thermodynamic Correction Factors 36
4.2.3 Transport Properties of Guest Molecules 39
4.3 The CO2/CH4 Mixed Hydrate Systems 48
4.3.1 Equilibrium Guest Distribution 49
4.3.2 Thermodynamic Correction Factors 53
4.3.3 Contribution of Hopping Events from the Different Pathways 55
4.3.4 Transport Properties of Guest Molecules 57
5. Conclusion 70
Appendix 72
Reference 79
dc.language.isoen
dc.title利用理論模型和動態蒙地卡羅模擬探討客體分子在水合物中藉由躍遷的擴散行為zh_TW
dc.titleTheoretical Model and Kinetic Monte Carlo Simulation of Guest Molecule Diffusion in sI Clathrate Hydrates via Cage Hoppingen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳台偉(David T. Wu),游琇?(Hsiu-Yu Yu)
dc.subject.keyword水合物,二氧化碳,甲烷,動態蒙地卡羅模擬,解析模型,zh_TW
dc.subject.keywordhydrate,carbon dioxide,methane,kinetic Monte Carlo,analytical model,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201903120
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
6.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved