Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor凌嘉鴻
dc.contributor.authorAn Yuen
dc.contributor.author俞安zh_TW
dc.date.accessioned2021-06-17T08:29:37Z-
dc.date.available2019-08-19
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation1. Butt, H., et al., Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule. Front Plant Sci, 2017. 8: p. 1441.
2. Cai, L., et al., CRISPR-mediated genome editing and human diseases. Genes Dis, 2016. 3(4): p. 244-251.
3. Cong, L., et al., Multiplex genome engineering using CRISPR/Cas systems. Science, 2013. 339(6121): p. 819-23.
4. Jinek, M., et al., RNA-programmed genome editing in human cells. Elife, 2013. 2: p. e00471.
5. Jiang, F. and J.A. Doudna, CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys, 2017. 46: p. 505-529.
6. Nishimasu, H., et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014. 156(5): p. 935-49.
7. Richardson, C.D., et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol, 2016. 34(3): p. 339-44.
8. Brinkman, E.K., et al., Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Mol Cell, 2018. 70(5): p. 801-813 e6.
9. Hinz, J.M., M.F. Laughery, and J.J. Wyrick, Nucleosomes Inhibit Cas9Endonuclease Activity in Vitro. Biochemistry, 2015. 54(48): p. 7063-6.
10. Horlbeck, M.A., et al., Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife, 2016. 5.
11. Chen, X., et al., Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Res, 2016. 44(13): p. 6482-92.
12. Chen, X., et al., The Chromatin Structure Differentially Impacts High-Specificity CRISPR-Cas9 Nuclease Strategies. Mol Ther Nucleic Acids, 2017. 8: p. 558-563.
13. Ding, X., et al., Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides. CRISPR J, 2019. 2: p. 51-63.
14. Isaac, R.S., et al., Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife, 2016. 5.
15. Richardson, C.D., et al., Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes. Nat Commun, 2016. 7: p. 12463.
16. Brown, J.S., et al., Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov, 2017. 7(1): p. 20-37.
17. Rogakou, E.P., et al., Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol, 1999. 146(5): p. 905-16.
18. Lobrich, M., et al., gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle, 2010. 9(4): p.662-9.
19. Shaltiel, I.A., et al., The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci, 2015. 128(4): p. 607-20.
20. Fischer, M., Census and evaluation of p53 target genes. Oncogene, 2017. 36(28): p. 3943-3956.
21. Uto, K., et al., Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J, 2004. 23(16): p. 3386-96.
22. Amaral, N., et al., Nuclear Dynamics of Heterochromatin Repair. Trends Genet, 2017. 33(2): p. 86-100.
23. Khurana, S., et al., A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell Rep, 2014. 8(4): p. 1049-62.
24. Timinszky, G., et al., A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol, 2009. 16(9): p. 923-9.
25. Hauer, M.H., et al., Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates. Nat Struct Mol Biol, 2017. 24(2): p. 99-107.
26. Ivanov, A.V., et al., PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell, 2007. 28(5): p. 823-37.
27. Ziv, Y., et al., Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol, 2006. 8(8): p. 870-6.
28. Cheng, X., et al., Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proc Natl Acad Sci U S A, 2018. 115(40): p. 10028-10033.
29. Xu, Y., et al., Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell, 2012. 48(5): p. 723-33.
30. Gursoy-Yuzugullu, O., M.K. Ayrapetov, and B.D. Price, Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Proc Natl Acad Sci U S A, 2015. 112(24): p. 7507-12.
31. Price, B.D. and A.D. D'Andrea, Chromatin remodeling at DNA double-strand breaks. Cell, 2013. 152(6): p. 1344-54.
32. Ciccia, A. and S.J. Elledge, The DNA damage response: making it safe to play with knives. Mol Cell, 2010. 40(2): p. 179-204.
33. Nitiss, J.L., Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer, 2009. 9(5): p. 338-50.
34. Korwek, Z., et al., Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells. DNA Repair (Amst), 2012. 11(11): p. 864-73.
35. Sadelain, M., E.P. Papapetrou, and F.D. Bushman, Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer, 2011. 12(1): p. 51-8.
36. Irion, S., et al., Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol, 2007. 25(12): p. 1477-82.
37. Harper, J.W., et al., The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993. 75(4): p. 805-16.
38. Mondal, N. and J.D. Parvin, DNA topoisomerase IIalpha is required for RNA polymerase II transcription on chromatin templates. Nature, 2001. 413(6854): p. 435-8.
39. Jinek, M., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012. 337(6096): p. 816-21.
40. Ihry, R.J., et al., p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med, 2018. 24(7): p. 939-946.
41. Haapaniemi, E., et al., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med, 2018. 24(7): p. 927-930.
42. Stiewe, T., The p53 family in differentiation and tumorigenesis. Nat Rev Cancer,2007. 7(3): p. 165-8.
43. Molchadsky, A., et al., p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis, 2010. 31(9): p. 1501-8.
44. Kim, S., et al., CRISPR RNAs trigger innate immune responses in human cells. Genome Res, 2018.
45. Plastaras, J.P., et al., Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res, 2007. 67(19): p. 9443-54.
46. Chang, C.W., et al., Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC Mol Biol, 2008. 9: p. 61.
47. Schlee, M. and G. Hartmann, Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol, 2016. 16(9): p. 566-80.
48. Wu, J. and Z.J. Chen, Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol, 2014. 32: p. 461-88.
49. Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014. 32: p. 513-45.
50. Schoggins, J.W. and C.M. Rice, Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol, 2011. 1(6): p. 519-25.
51. Pichlmair, A., et al., RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science, 2006. 314(5801): p. 997-1001.
52. Wang, Y., et al., Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol, 2010. 17(7): p. 781-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74319-
dc.description.abstractCRISPR-Cas9基因編輯技術目前應用相當廣泛,包括動植物以及微生物之領域。當 Cas9與短片段 DNA一同送入細胞之後, Cas9能切斷基因標靶位點,而DNA可作為同源重組修復之模板,以達到精準的基因編輯。先前研究發現:利用電穿孔技術將與人類基因組不同源的短片段 DNA與 Cas9送入細胞,在許多基因標靶位點上皆能顯著地提升基因編輯效率,而目前仍不明瞭造成此現象之原因。在我們的實驗中發現:短片段 DNA透過電穿孔的方式可以迅速地被送入細胞核之中,引起細胞內的 DNA損傷反應進而造成大規模地核小體重排。 Cas9的基因標靶位點被核小體佔據已經被證明是限制 Cas9作用的主要原因。由於短片段DNA刺激 DNA損傷反應而造成核小體重排,使得原本被核小體纏繞緊密的染色
質變得較為鬆散,故 Cas9較容易辨認並切斷標靶位點,進而增加基因編輯的效率。此研究說明了短片段 DNA提升基因編輯效率之機 制。探討進行基因編輯時, CRISPR-Cas9系統所引發的細胞反應,有助於開發更安全的基因編輯技術並同時兼具良好的編輯效率。
zh_TW
dc.description.abstractCRISPR-Cas9 is a robust genome editing technology that works in a broad range of organisms including human cells. When co-introduced with a synthetic DNA oligonucleotide template, Cas9 can facilitate site-specific integration of the DNA template sequence via homology-directed repair (HDR) for precise genome modification. An interesting observation was made in a previous study, in which the Cas9 gene editing efficiency in cells was significantly enhanced by co-electroporation of single-stranded DNA oligonucleotides. This enhancement was independent of DNA sequences. We discovered by serendipity that electroporation rapidly delivered DNA oligonucleotides into nucleus, triggered DNA damage response (DDR) and induced global nucleosome rearrangement. Since nucleosome occupancy is known to be the major impediment to target recognition by Cas9, decondensation of heterochromatin effectively lower this barrier by increasing the accessibility of DNA to Cas9, promoting double-strand break (DSB) repair, and resulting in higher Cas9 editing efficiency. To the best of our knowledge, this is the first report of nucleosome rearrangement by DNA electroporation, a common practice for general DNA delivery and nuclease-directed genome editing. A thorough investigation is therefore needed to evaluate the cellular consequences and safety and to determine the influence on genome editing outcome.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:29:37Z (GMT). No. of bitstreams: 1
ntu-108-R06b46006-1.pdf: 3137049 bytes, checksum: 288fc4a57ce70366548e15fa3e9fea4a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsTABLE OF CONTENTS I
LIST OF TABLES IV
摘要
V
ABSTRACT VI
1. INTRODUCTION 1
1.1 The mechanism of CRISPR-Cas9 1
1.2 Nucleosome impediment to Cas9 gene editing 2
1.3 Cracking the mystery of enhancement of Cas9 editing by DNA oligonucleotides 3
1.4 Introduction to DNA damage response 4
1.5 Research hypothesis and specific aims 6
2. RESULTS 7
2.1 γ-H2AX is induced by DNA oligonucleotides 7
2.2 DNA oligonucleotides enhance Cas9 editing efficiency 7
2.3 Aim 1 To define the location of DNA oligonucleotides 8
2.4 Aim 2 To ensure DNA oligonucleotides triggered DNA damage response 10
2.5 Aim 3 To proof nucleosome rearrangement induced by DNA oligonucleotides
12
3. DISCUSSION 13
4. MATERIALS AND METHODS 18
4.1 Cell lines and cell culture 18
4.2 Compound treatments 18
4.3 Preparation of sgRNA 19
4.4 Preparation of DNA oligonucleotides 21
4.5 Electroporation 22
4.5.1 X unit 22
4.5.2 Y unit 22
4.6 The cleavage of Cas9 target region analysis 23
4.6.1 In vitro cleavage assay 23
4.6.2 T7 endonuclease 1 Assay 23
4.7 Immunofluorescence staining and confocal microscopy 24
4.8 Western Blot Analysis 25
4.9 Micrococcal nuclease digestion 26
4.10 Synchronization and cell cycle analysis 27
4.11 RNA extraction and Real-time RT-PCR 28
5. APPENDIX 32
6. REFERENCE 34
7. FIGURES 41
Figure 1. Schematic representation of CRISPR-mediated genome editing 41
Figure 2. Schematic representation of DNA damage response 42
Figure 3. Schematic illustration of our hypothesis 43
Figure 4. DNA oligonucleotide-induced cellular response was similar with etoposide treatment 44
Figure 5. The impact of DNA oligonucleotides on Cas9 activity 45
Figure 6. The Cas9 editing efficiency was enhanced by DNA oligonucleotides 46
Figure 7. Experimental design of transfected DNA into cells in adherence by electroporation 47
Figure 8. The transfection efficiency and cell viability of electroporation on Lonza nucleofector Y unit 48
Figure 9. DNA damage response as induced by etoposide treatment 49
Figure 10. DNA oligonucleotides dispersed in nucleus 51
Figure 11. Kinetics of the DNA oligonucleotide-induced effects on DDR proteins
53
Figure 12. Effect of DNA oligonucleotides on HCT116 cell cycle distribution 54
Figure 13. Analysis of chromatin compaction by MNase digestion 55
Figure 14. CIP treatment eliminated IVT sgRNA-induced immune response 56
dc.language.isoen
dc.subjectCRISPR-Cas9zh_TW
dc.subject短片段 DNAzh_TW
dc.subjectDNA損傷反應zh_TW
dc.subject核小體重排zh_TW
dc.subject基因編輯zh_TW
dc.subjectDNA damage responseen
dc.subjectDNA oligonucleotidesen
dc.subjectCRISPR-Cas9en
dc.subjectgene editingen
dc.subjectnucleosome rearrangementen
dc.title外源DNA造成的核小體短暫重排提升CRISPR-Cas9系統的基因編輯效率zh_TW
dc.titleEnhanced CRISPR editing by DNA oligonucleotide-induced transient nucleosome rearrangementen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞華,冀宏源,張?仁
dc.subject.keywordCRISPR-Cas9,短片段 DNA,DNA損傷反應,核小體重排,基因編輯,zh_TW
dc.subject.keywordCRISPR-Cas9,DNA oligonucleotides,DNA damage response,nucleosome rearrangement,gene editing,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201903055
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved