Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡丰喬
dc.contributor.authorChao-Yu Chuen
dc.contributor.author褚韶瑜zh_TW
dc.date.accessioned2021-06-17T08:28:56Z-
dc.date.available2024-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation1. Sanderson, R.J. and J.A.D. Ironside, Squamous cell carcinomas of the head and neck. British Medical Journal, 2002. 325(7368): p. 822-827.
2. Vos, T., et al., Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016. 388(10053): p. 1545-1602.
3. McGuire, S., World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Advances in Nutrition, 2016. 7(2): p. 418-419.
4. O'Rorke, M.A., et al., Human papillomavirus related head and neck cancer survival: a systematic review and meta-analysis. Oral Oncol, 2012. 48(12): p. 1191-201.
5. Warnakulasuriya, S., Global epidemiology of oral and oropharyngeal cancer. Oral Oncol, 2009. 45(4-5): p. 309-16.
6. Patel, S.G. and J.P. Shah, TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin, 2005. 55(4): p. 242-58; quiz 261-2, 264.
7. Sacco, A.G. and E.E. Cohen, Current Treatment Options for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. J Clin Oncol, 2015. 33(29): p. 3305-13.
8. Vermorken, J.B. and P. Specenier, Optimal treatment for recurrent/metastatic head and neck cancer. Ann Oncol, 2010. 21 Suppl 7: p. vii252-61.
9. Kundu, S.K. and M. Nestor, Targeted therapy in head and neck cancer. Tumour Biol, 2012. 33(3): p. 707-21.
10. Keir, J.A., et al., Outcomes in squamous cell carcinoma with advanced neck disease. Ann R Coll Surg Engl, 2007. 89(7): p. 703-8.
11. Noguti, J., et al., Metastasis from oral cancer: an overview. Cancer Genomics Proteomics, 2012. 9(5): p. 329-35.
12. Yokota, J., Tumor progression and metastasis. Carcinogenesis, 2000. 21(3): p. 497-503.
13. Baum, B., J. Settleman, and M.P. Quinlan, Transitions between epithelial and mesenchymal states in development and disease. Seminars in Cell & Developmental Biology, 2008. 19(3): p. 294-308.
14. Ivaska, J., et al., Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res, 2007. 313(10): p. 2050-62.
15. Guo, M., et al., The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J, 2013. 105(7): p. 1562-8.
16. Nijkamp, M.M., et al., Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol, 2011. 99(3): p. 344-8.
17. da Silva, S.D., et al., Epithelial-mesenchymal transition (EMT) markers have prognostic impact in multiple primary oral squamous cell carcinoma. Clinical & Experimental Metastasis, 2015. 32(1): p. 55-63.
18. Lo, H.W., et al., Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res, 2007. 67(19): p. 9066-76.
19. Qian, X., et al., N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene, 2014. 33(26): p. 3411-3421.
20. Kelleher, F.C., et al., Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis, 2013. 34(10): p. 2198-205.
21. Haugsten, E.M., et al., Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res, 2010. 8(11): p. 1439-52.
22. Ornitz, D.M., et al., Receptor specificity of the fibroblast growth factor family. J Biol Chem, 1996. 271(25): p. 15292-7.
23. Funato, N., et al., Basic fibroblast growth factor induces apoptosis in myofibroblastic cells isolated from rat palatal mucosa. Biochem Biophys Res Commun, 1997. 240(1): p. 21-6.
24. Katoh, M. and H. Nakagama, FGF receptors: cancer biology and therapeutics. Med Res Rev, 2014. 34(2): p. 280-300.
25. Tomlinson, D.C., et al., FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol, 2007. 213(1): p. 91-8.
26. Murase, H., et al., Prognostic significance of the co-overexpression of fibroblast growth factor receptors 1, 2 and 4 in gastric cancer. Mol Clin Oncol, 2014. 2(4): p. 509-517.
27. Nomura, S., et al., FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer. British Journal of Cancer, 2008. 99(2): p. 305-313.
28. Billerey, C., et al., Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol, 2001. 158(6): p. 1955-9.
29. Freier, K., et al., Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol, 2007. 43(1): p. 60-6.
30. Marshall, M.E., et al., Fibroblast growth factor receptors are components of autocrine signaling networks in head and neck squamous cell carcinoma cells. Clin Cancer Res, 2011. 17(15): p. 5016-25.
31. Lawrence, M.S., et al., Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 2015. 517(7536): p. 576-582.
32. Vairaktaris, E., et al., FGFR-2 and -3 play an important role in initial stages of oral oncogenesis. Anticancer Res, 2006. 26(6B): p. 4217-21.
33. Henson, B.J. and S.M. Gollin, Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet Genome Res, 2010. 128(4): p. 192-8.
34. Chang, J., et al., Multiple receptor tyrosine kinase activation attenuates therapeutic efficacy of the fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2 amplified gastric cancer. Oncotarget, 2015. 6(4): p. 2009-22.
35. Gyanchandani, R., et al., A Proangiogenic Signature Is Revealed in FGF-Mediated Bevacizumab-Resistant Head and Neck Squamous Cell Carcinoma. Molecular Cancer Research, 2013. 11(12): p. 1585-1596.
36. Ornitz, D.M. and N. Itoh, The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol, 2015. 4(3): p. 215-66.
37. Wu, Y.J., Z.J. Chen, and A. Ullrich, EGFR and FGFR signaling through FRS2 is subject to negative feedback control by ERK1/2. Biological Chemistry, 2003. 384(8): p. 1215-1226.
38. Gartside, M.G., et al., Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res, 2009. 7(1): p. 41-54.
39. Sheng, Z., S.K. Evans, and M.R. Green, An Activating Transcription Factor 5-Mediated Survival Pathway as a Target for Cancer Therapy. Oncotarget, 2010. 1(6): p. 457-460.
40. Cochet, C., et al., Demonstration of Epidermal Growth Factor-Induced Receptor Dimerization in Living Cells Using a Chemical Covalent Cross-Linking Agent. Journal of Biological Chemistry, 1988. 263(7): p. 3290-3295.
41. Lax, I., et al., Epidermal Growth-Factor (Egf) Induces Oligomerization of Soluble, Extracellular, Ligand-Binding Domain of Egf Receptor - a Low Resolution Projection Structure of the Ligand-Binding Domain. Journal of Biological Chemistry, 1991. 266(21): p. 13828-13833.
42. Sarabipour, S. and K. Hristova, Mechanism of FGF receptor dimerization and activation. Nature Communications, 2016. 7.
43. Evers, T.H., et al., Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry, 2006. 45(44): p. 13183-13192.
44. Henriksen, L., et al., Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands. Plos One, 2013. 8(3).
45. Langemeyer, L., F. Frohlich, and C. Ungermann, Rab GTPase Function in Endosome and Lysosome Biogenesis. Trends in Cell Biology, 2018. 28(11): p. 957-970.
46. Garvalov, B.K., et al., PHD3 regulates EGFR internalization and signalling in tumours. Nature Communications, 2014. 5.
47. Dutta, D. and J.G. Donaldson, Search for inhibitors of endocytosis: Intended specificity and unintended consequences. Cell Logist, 2012. 2(4): p. 203-208.
48. Ceresa, B.P., Regulation of EGFR endocytic trafficking by rab proteins. Histology and Histopathology, 2006. 21(9): p. 987-993.
49. Lo, H.W., S.C. Hsu, and M.C. Hung, EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Research and Treatment, 2006. 95(3): p. 211-218.
50. Wells, A., Tumor invasion: Role of growth factor-induced cell motility. Advances in Cancer Research, Vol 78, 2000. 78: p. 31-101.
51. Andl, C.D., et al., EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2004. 287(6): p. G1227-G1237.
52. Ono, M. and M. Kuwano, Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clinical Cancer Research, 2006. 12(24): p. 7242-7251.
53. Fukui, T. and T. Mitsudomi, Mutations in the epidermal growth factor receptor gene and effects of EGFR-tyrosine kinase inhibitors on lung cancers. Gen Thorac Cardiovasc Surg, 2008. 56(3): p. 97-103.
54. canSAR Black. Available from: https://cansarblack.icr.ac.uk/.
55. Zhao, Q., et al., Tumor-specific isoform switch of the fibroblast growth factor receptor 2 underlies the mesenchymal and malignant phenotypes of clear cell renal cell carcinomas. Clin Cancer Res, 2013. 19(9): p. 2460-72.
56. Rappel, W.J. and L. Edelstein-Keshet, Mechanisms of Cell Polarization. Curr Opin Syst Biol, 2017. 3: p. 43-53.
57. Stehbens, S.J., et al., FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J Cell Sci, 2018. 131(15).
58. Volmat, V., et al., The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. J Cell Sci, 2001. 114(Pt 19): p. 3433-43.
59. Garfinkel, S., et al., FGF-1-dependent proliferative and migratory responses are impaired in senescent human umbilical vein endothelial cells and correlate with the inability to signal tyrosine phosphorylation of fibroblast growth factor receptor-1 substrates. J Cell Biol, 1996. 134(3): p. 783-91.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74305-
dc.description.abstract頭頸部鱗狀上皮細胞癌在台灣有相當高的發病率及致死率,且容易復發及轉移,然而目前在頭頸癌的治療上並沒有很有效的治療方式。因此,我們希望找到新的治療標的來阻止腫瘤的轉移。纖維母細胞生長因子受器(fibroblast growth factor receptor, FGFR)參與了胚胎發育、血管新生、傷口癒合等重要的生理功能,且在細胞增生、分化以及移動上都扮演了重要的角色。除此之外,近年來有研究顯示異常的FGFR和許多癌症的發生及其病程發展相關,但FGFR在頭頸癌病程上所扮演的角色目前仍沒有詳盡的探討。因此,我們利用FGFRs的抑制劑AZD4547來觀察對口腔鱗狀上皮癌細胞遷移的影響。我們發現,在沒有FBS並加入FGF1作刺激的環境下給予AZD4547,細胞移動速度會顯著的下降;然而在有FBS的環境下給予AZD4547,卻無法達到抑制細胞遷移的效果。進一步釐清FBS中的何種物質導致此現象的發生,發現到在沒有胎牛血清(fetal bovine serum, FBS)並加入表皮生長因子(epidermal growth factor, EGF)的環境下再給予AZD4547,能夠看到類似在FBS中的結果。藉此,我們推論表皮細胞生長因子受器(epidermal growth factor, EGFR)和FGFR 訊息之間可能存在交互作用。
為了進一步探討EGFR與FGFR 訊息之間的交互作用,我們透過單細胞追蹤的技術去探討其中一個受器訊息的存在與否,對另一個受器在細胞遷移上造成何種影響。從實驗結果我們觀察到EGF可以回復FGFRs抑制劑的抑制效果,卻無法回復敲減FGFR2的抑制效果。在加EGFR抑制劑及敲減EGFR的實驗中也觀察到相似的情形。藉此推論EGFR和FGFR要在彼此都存在之下才會產生交互作用。
我們進一步提出三個可能的機轉模型:receptor level model、transactivation model以及internalization competition model。我們目前的實驗結果指出:當FGFR的adaptor protein FGFR substrate 2a (FRS2)被敲減時可以輕微減弱EGF在抑制劑上的回復效果,且從western blot結果發現到敲減FRS2時可以讓細胞中的phospho-ERK (pErk)表現量減少。因此,我們推論EGFR和FGFR 訊息之間很可能是透過transactivation的方式來產生交互作用。我們仍需透過其他實驗來釐清並加強此部分的推論,期望能有更充分的瞭解後,對頭頸癌的治療提供指引與方向。
zh_TW
dc.description.abstractHead and neck squamous cell carcinoma (HNSCC) causes high metastatic rate, recurrence rate and mortality in Taiwan, but there is still no effective treatment. We therefore aimed at finding new therapeutic targets for HNSCC and focused on the fibroblast growth factor receptor (FGFR), which is important in cancer cell proliferation, differentiation and migration. When we used FGFR inhibitor AZD4547 to treat HNSCC cells in cell migration assays, it inhibited fibroblast growth factor (FGF1)-stimulated SAS migration. However, AZD4547 did not inhibit SAS migration when FBS (fetal bovine serum) was present. Furthermore, the presence of EGF (epidermal growth factor) also abrogated the inhibitory effect of AZD4547 on SAS migration. Thus, we proposed that EGFR (epidermal growth factor receptor) and FGFR signalling interacted with each other during cell migration.
To elucidate the crosstalk between EGFR and FGFR signalling, we used single-cell tracking to analyze how FGFR/EGFR inhibition alters migration behavior in the presence or absence of the other i.e. EGFR/FGFR signalling. We found out that EGF rescued the inhibition of HNSCC cell migration by FGFR inhibitors, but EGF could not rescue FGFR2 knockdown effect. Likewise, FGF1 rescued the inhibition of HNSCC cell migration by EGFR inhibitors, but could not rescue EGFR knockdown effect.
To explain how EGFR interacts with FGFR signaling, we proposed three hypothetical models: receptor level model, transactivation model and internalization competition model. Because FGFR substrate 2a (FRS2) knockdown showed modest inhibition on EGF stimulation and western blot showed that knockdown FRS2 decreased phospho-ERK (pErk) expression, we favor transactivation model. Further investigations are underway to verify our speculations, with the hope to benefit current HNSCC treatments.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:28:56Z (GMT). No. of bitstreams: 1
ntu-108-R06443017-1.pdf: 5693727 bytes, checksum: fc2e7dff68f576df524cae0850bc619f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Introduction of Head and Neck Squamous Cell Carcinoma (HNSCC) 1
1.1.1 Head and neck cancers are one of the most common cancers in the world. 1
1.1.2 There are lots of development space in the future treatment of head and neck cancer. 2
1.2 FGFRs Affect EMT and Cancer Metastasis, and maybe Potential Targets for the Treatment of HNSCC 3
1.2.1 Progression of HNSCC is associated with epithelial-mesenchymal transition. 3
1.2.2 Introduction of fibroblast growth factor receptors (FGFRs). 4
1.2.3 The expression level of FGFRs is related to disease progression. 5
1.2.4 FGFRs are highly expressed in HNSCC. 5
1.3 EGFR and FGFR may Interact with Each Other During Cell Migration 6
1.4 Possible Models for the Mechanism of EGFR-FGFR Interaction 11
1.4.1 Receptor level model 11
1.4.2 Transactivation model 13
1.4.3 Internalization competition model 15
1.5 Aim: To confirm and find out the mechanism between EGFR and FGFR interaction 17
Chapter 2 Materials and Methods 18
2.1 Cell Lines and Cell Culture 18
2.2 Wound-Healing Cell Migration Assay 18
2.2.1 Pre-processing 18
2.2.2 Live cell imaging 19
2.3 Protein Extraction and Western Blot 19
2.3.1 Protein extraction and quantitative 19
2.3.2 Gel preparation, electrophoresis, protein transfer and blocking 20
2.3.3 Primary and secondary antibody immunological binding 20
2.3.4 Imaging and analysis 21
2.4 RNA Extraction and Quantitative Polymerase Chain Reaction (QPCR) 21
2.4.1 RNA extraction 21
2.4.2 Reverse transcription PCR 21
2.4.3 Real-Time PCR (RT-PCR) 22
2.5 Lentivirus shRNA Knockdown 22
2.5.1 Lentivirus packaging 22
2.5.2 MOI determination for knockdown lentivirus: MTT assay 23
2.5.3 Virus infection: reverse transduction 24
2.6 Lentivirus-based Overexpression constructs 24
2.7 Förster Resonance Energy Transfer (FRET) 25
2.8 Time-Lapse Imaging Assay for EGFR internalization 26
2.9 Immunofluorescent Assay (IFA) 27
2.10 Reagents 27
Chapter 3 Results 28
3.1 Rescue Effect Required Physical Presence of the EGFR and FGFR 28
3.2 Transactivation Model 29
3.2.1 Knockdown FRS2 with EGF stimulation showed slightly inhibitory effect on cell migration and partly lower pERK level on western blot. 29
3.2.2 Using FRET to see if EGFR and FGFR2 were close enough. 30
3.3 Internalization Competition Model 32
3.3.1 Internalize comparison between shCTRL and shFGFR2 showed inconsistently different results in dynamic experiment. 32
3.3.2 shFGFR2 group decreased EGFR internalization in immunofluorescence. 33
3.4 Signalling Effect of these Treatments 34
3.5 Verify the Importance of Physical Presence by Overexpressing FGFR2 36
3.5.1 Rescue migration experiment did not meet our expectation. 36
3.5.2 Cell migration assay wasn’t a good readout for verifying the importance of physical presence because FGFR2 affected cell polarity. 37
3.5.3 Rescue western blot experiment did not meet our expectation either. 38
3.5.4 Immunofluorescence of pERK maybe a better readout for rescue experiment. 39
Chapter 4 Discussion 40
4.1 More Experiments are Needed to Verify Transactivation Model 40
4.2 Our Data Did Not Favor Internalization Competition Model 41
4.3 Elucidate the Importance of Physical Presence by Overexpressing FGFR2 42
Chapter 5 Figures 44
Chapter 6 Tables 75
REFERENCE 78
PLASMID MAP 81
MATLAB SCRIPTS 86
dc.language.isozh-TW
dc.title纖維母細胞生長因子受器與上皮細胞生長因子受器的訊息交互作用對頭頸癌細胞中細胞遷移的影響zh_TW
dc.titleSignalling interactions between FGFR and EGFR alter the migration of head and neck cancer cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳青周,張玉芳,鄭乃禎,涂熊林
dc.subject.keyword頭頸部鱗狀細胞癌,表皮細胞生長因子受器,纖維母細胞生長因子受器,細胞遷移,訊息傳遞,zh_TW
dc.subject.keywordHNSCC,EGFR,FGFR,cell migration,signal transduction,en
dc.relation.page122
dc.identifier.doi10.6342/NTU201903069
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved