請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/742完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳林祈(Lin-Chi Chen) | |
| dc.contributor.author | Chih-Yu Lai | en |
| dc.contributor.author | 賴知佑 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:00:24Z | - |
| dc.date.available | 2019-08-05 | |
| dc.date.available | 2021-05-11T05:00:24Z | - |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-25 | |
| dc.identifier.citation | 1. Abramowitz, M. (1974). Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables: Dover Publications, Inc.
2. Aoki, K. (1990). Approximate models of interdigitated array electrodes for evaluating steady-state currents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 284(1), 35-42 3. Aoki, K., Morita, M., Niwa, O., & Tabei, H. (1988). Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 256(2), 269-282 4. Arslan, F., Ustabaş, S., & Arslan, H. (2011). An Amperometric Biosensor for Glucose Determination Prepared from Glucose Oxidase Immobilized in Polyaniline-Polyvinylsulfonate Film. Sensors (Basel, Switzerland), 11(8), 8152-8163 5. Arya, S. K., Zhurauski, P., Jolly, P., Batistuti, M. R., Mulato, M., & Estrela, P. (2018). Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosensors and Bioelectronics, 102, 106-112 6. Ashish, V. J., Joan, C., & Jiang, Z. (2011). An impedimetric approach for accurate particle sizing using a microfluidic Coulter counter. Journal of Micromechanics and Microengineering, 21(4), 045036 7. Bard, A. J., Crayston, J. A., Kittlesen, G. P., Varco Shea, T., & Wrighton, M. S. (1986). Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Analytical Chemistry, 58(11), 2321-2331 8. Bard, A. J., & Faulkner, L. R. (2000). Electrochemical Methods: Fundamentals and Applications: Wiley. 9. Barnes, E. O., Lewis, G. E. M., Dale, S. E. C., Marken, F., & Compton, R. G. (2012). Generator-collector double electrode systems: A review. Analyst, 137(5), 1068-1081 10. Bhuiyan, R. H. M., Alam, N., Caicedo, J. M., & Ali, M. (2015). Real-Time Wireless Moisture Sensing in Concrete Using Interdigitated Stick-on Sensors. Sensors & Transducers, 195(12), 30-38 11. Bissell, C. C. C. C., & Chapman, D. A. D. A. (1992). Digital signal transmission: Cambridge University Press. 12. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355(6360), 564-566 13. Brosel-Oliu, S., Ferreira, R., Uria, N., Abramova, N., Gargallo, R., Muñoz-Pascual, F.-X., & Bratov, A. (2018). Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7. Sensors and Actuators B: Chemical, 255, 2988-2995 14. Calixto, W. P., Alvarenga, B., da Mota, J. C., Brito, L. d. C., Wu, M., Alves, A. J., . . . Antunes, C. F. R. L. (2010). Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization. Mathematical Problems in Engineering, 2010, 19 15. Capaldo, P., Alfarano, S. R., Ianeselli, L., Zilio, S. D., Bosco, A., Parisse, P., & Casalis, L. (2016). Circulating Disease Biomarker Detection in Complex Matrices: Real-Time, In Situ Measurements of DNA/miRNA Hybridization via Electrochemical Impedance Spectroscopy. ACS Sensors, 1(8), 1003-1010 16. Chaubey, A., & Malhotra, B. D. (2002). Mediated biosensors. Biosens Bioelectron, 17(6-7), 441-456 17. Cheever, M. A., Allison, J. P., Ferris, A. S., Finn, O. J., Hastings, B. M., Hecht, T. T., . . . Matrisian, L. M. (2009). The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res, 15(17), 5323-5337 18. Chen, L.-C., & Ho, K.-C. (2001). Interpretations of voltammograms in a typical two-electrode cell: application to complementary electrochromic systems. Electrochimica Acta, 46(13), 2159-2166 19. Chesney, D. J. (1996). Laboratory Techniques in Electroanalytical Chemistry, 2nd Edition Edited by Peter T. Kissinger (Purdue University) and William R. Heineman (University of Cincinnati). Dekker: Monticello, NY. 1996. xxii + 986 pp. $79. ISBN 0-8247-9445-1. Journal of the American Chemical Society, 118(44), 10946-10946 20. Chiriaco, M. S., Primiceri, E., D'Amone, E., Ionescu, R. E., Rinaldi, R., & Maruccio, G. (2011). EIS microfluidic chips for flow immunoassay and ultrasensitive cholera toxin detection. Lab on a Chip, 11(4), 658-663 21. Cho, H.-M., Park, Y. J., Yeon, J.-W., & Shin, H.-C. (2009). In-depth investigation on two- and three-electrode impedance measurements in terms of the effect of the counter electrode. Electronic Materials Letters, 5(4), 169-178 22. Cima, L. G. (1994). Receptors: Models for binding, trafficking and signaling. By Douglas A. Lauffenburger and Jennifer J. Linderman, Oxford University Press, 1993, $70.00. AIChE Journal, 40(6), 1089-1089 23. da Silva, E. T. S. G., Souto, D. E. P., Barragan, J. T. C., de F. Giarola, J., de Moraes, A. C. M., & Kubota, L. T. (2017). Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem, 4(4), 778-794 24. Daniels, J. S., & Pourmand, N. (2007). Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis, 19(12), 1239-1257 25. de la Rica, R., Fernández-Sánchez, C., & Baldi, A. (2006). Polysilicon interdigitated electrodes as impedimetric sensors. Electrochemistry Communications, 8(8), 1239-1244 26. Ding, S., Das, S. R., Brownlee, B. J., Parate, K., Davis, T. M., Stromberg, L. R., . . . Claussen, J. C. (2018). CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening. Biosensors and Bioelectronics, 117, 68-74 27. Ding, S., Mosher, C., Lee, X. Y., Das, S. R., Cargill, A. A., Tang, X., . . . Claussen, J. C. (2017). Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array. ACS Sensors, 2(2), 210-217 28. Goode, J. A., Rushworth, J. V. H., & Millner, P. A. (2015). Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir, 31(23), 6267-6276 29. Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical Biosensors - Sensor Principles and Architectures. Sensors (Basel, Switzerland), 8(3), 1400-1458 30. Groeber, F., Engelhardt, L., Egger, S., Werthmann, H., Monaghan, M., Walles, H., & Hansmann, J. (2015). Impedance spectroscopy for the non-destructive evaluation of in vitro epidermal models. Pharmaceutical research, 32(5), 1845-1854 31. Hambley, A. R. (2011). Electrical engineering: principles and applications (Vol. 2): Prentice Hall. 32. Hianik, T., & Wang, J. (2009). Electrochemical Aptasensors – Recent Achievements and Perspectives. Electroanalysis, 21(11), 1223-1235 33. Ivnitskii, D. M., & Rishpon, J. (1994). A potentiometric biosensor for pesticides based on the thiocholine hexacyanoferrate (III) reaction. Biosensors and Bioelectronics, 9(8), 569-576 34. Jacobsen, T., & West, K. (1995). Diffusion impedance in planar, cylindrical and spherical symmetry. Electrochimica Acta, 40(2), 255-262 35. Jiang, J., Wang, X., Chao, R., Ren, Y., Hu, C., Xu, Z., & Liu, G. L. (2014). Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors and Actuators B: Chemical, 193, 653-659 36. Jin, S., Ye, Z., Wang, Y., & Ying, Y. (2017). A Novel Impedimetric Microfluidic Analysis System for Transgenic Protein Cry1Ab Detection. 7, 43175 37. Jolly, P., Formisano, N., Tkáč, J., Kasák, P., Frost, C. G., & Estrela, P. (2015). Label-free impedimetric aptasensor with antifouling surface chemistry: A prostate specific antigen case study. Sensors and Actuators B: Chemical, 209, 306-312 38. Keefe, A. D., Pai, S., & Ellington, A. (2010). Aptamers as therapeutics. Nat Rev Drug Discov, 9(7), 537-550 39. Kirby, B. J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices: Cambridge University Press. 40. Kochowski, S., & Nitsch, K. (2002). Description of the frequency behaviour of metal–SiO2–GaAs structure characteristics by electrical equivalent circuit with constant phase element. Thin Solid Films, 415(1), 133-137 41. Lasia, A. (2002). Electrochemical Impedance Spectroscopy and its Applications. In B. E. Conway, J. O. M. Bockris, & R. E. White (Eds.), Modern Aspects of Electrochemistry (pp. 143-248). Boston, MA: Springer US. 42. Lim, T., Lee, S. Y., Yang, J., Hwang, S. Y., & Ahn, Y. (2017). Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. BioChip Journal, 11(2), 109-115 43. Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Aptasensors: a review. Journal of biomedical nanotechnology, 6(2), 93-105 44. Liu, X., Qin, Y., Deng, C., Xiang, J., & Li, Y. (2015). A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification. Talanta, 132, 150-154 45. Lu, Y., Yao, Y., Zhang, Q., Zhang, D., Zhuang, S., Li, H., & Liu, Q. (2015). Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosensors and Bioelectronics, 67, 662-669 46. Lum, J., Wang, R., Hargis, B., Tung, S., Bottje, W., Lu, H., & Li, Y. (2015). An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus. Sensors (Basel), 15(8), 18565-18578 47. Malvano, F., Albanese, D., Pilloton, R., & Di Matteo, M. (2017). A new label-free impedimetric aptasensor for gluten detection. Food Control, 79, 200-206 48. Manczak, R., Fouet, M., Courson, R., Fabre, P.-L., Montrose, A., Sudor, J., . . . Reybier, K. (2016). Improved on-chip impedimetric immuno-detection of subpopulations of cells toward single-cell resolution. Sensors and Actuators B: Chemical, 230, 825-831 49. Marchenko, S. V., Kucherenko, I. S., Hereshko, A. N., Panasiuk, I. V., Soldatkin, O. O., El'skaya, A. V., & Soldatkin, A. P. (2015). Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate. Sensors and Actuators B: Chemical, 207, 981-986 50. Masel, R. I. (1996). Principles of adsorption and reaction on solid surfaces. New York: Wiley. 51. Mazlan, N. S., Ramli, M. M., Abdullah, M. M. A. B., Halin, D. S. C., Isa, S. S. M., Talip, L. F. A., . . . Murad, S. A. Z. (2017). Interdigitated electrodes as impedance and capacitance biosensors: A review. AIP Conference Proceedings, 1885(1), 020276 52. Morita, M., Hayashi, K., Horiuchi, T., Shibano, S., Yamamoto, K., & Aoki, K. (2014). Enhancement of Redox Cycling Currents at Interdigitated Electrodes with Elevated Fingers. Journal of The Electrochemical Society, 161(4), H178-H182 53. Mulder, W. H., Sluyters, J. H., Pajkossy, T., & Nyikos, L. (1990). Tafel current at fractal electrodes: Connection with admittance spectra. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 285(1), 103-115 54. Nadja E Solis-Marcano, M. L.-N., Brismar Pinto-Pacheco, Carlos R. Cabrera. (2016). Capacitive Biosensing Technique for the Detection of DNA Modification and Hybridization Process Using Tailored Interdigital Microelectrode Arrays. 46th International Conference on Environmental Systems(Electrochemistry Capacitance) 55. Niwa, O., Morita, M., & Tabei, H. (1990). Electrochemical behavior of reversible redox species at interdigitated array electrodes with different geometries: consideration of redox cycling and collection efficiency. Analytical Chemistry, 62(5), 447-452 56. Ohno, R., Ohnuki, H., Wang, H., Yokoyama, T., Endo, H., Tsuya, D., & Izumi, M. (2013). Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Biosensors and Bioelectronics, 40(1), 422-426 57. Orazem, M. E., & Tribollet, B. (2011). Electrochemical Impedance Spectroscopy: Wiley. 58. Punter-Villagrasa, J., Colomer-Farrarons, J., del Campo, F. J., & Miribel-Català, P. (2017). Introduction to Electrochemical Point-of-Care Devices. In J. Punter-Villagrasa, J. Colomer-Farrarons, F. J. del Campo, & P. Miribel (Eds.), Amperometric and Impedance Monitoring Systems for Biomedical Applications (pp. 1-26). Cham: Springer International Publishing. 59. Pursey, J. P., Chen, Y., Stulz, E., Park, M. K., & Kongsuphol, P. (2017). Microfluidic electrochemical multiplex detection of bladder cancer DNA markers. Sensors and Actuators B: Chemical, 251, 34-39 60. Radi, A.-E., Acero Sánchez, J. L., Baldrich, E., & O'Sullivan, C. K. (2005). Reusable Impedimetric Aptasensor. Analytical Chemistry, 77(19), 6320-6323 61. Rasooly, A. (2006). Moving biosensors to point-of-care cancer diagnostics. Biosens Bioelectron, 21(10), 1847-1850 62. Rasooly, A., & Jacobson, J. (2006). Development of biosensors for cancer clinical testing. Biosens Bioelectron, 21(10), 1851-1858 63. Reich, P., Stoltenburg, R., Strehlitz, B., Frense, D., & Beckmann, D. (2017). Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus. International journal of molecular sciences, 18(11) 64. Rhinehardt, K., Mohan, R., Srinivas, G., & Kelkar, A. (2015, 7-10 March 2015). Analysis and understanding of aptamer and peptide molecular interactions: Application to mucin 1 (Muc1) aptasensor. Paper presented at the 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS). 65. Rogers, K. R. (2000). Principles of affinity-based biosensors. Molecular biotechnology, 14(2), 109-129 66. Romero, M. R., Ahumada, F., Garay, F., & Baruzzi, A. M. (2010). Amperometric Biosensor for Direct Blood Lactate Detection. Analytical Chemistry, 82(13), 5568-5572 67. Sexton, A. P. (2012, 2012//). Abramowitz and Stegun – A Resource for Mathematical Document Analysis. Paper presented at the Intelligent Computer Mathematics, Berlin, Heidelberg. 68. Shoar Abouzari, M. R., Berkemeier, F., Schmitz, G., & Wilmer, D. (2009). On the physical interpretation of constant phase elements. Solid State Ionics, 180(14), 922-927 69. Shoute, L. C. T., Anwar, A., MacKay, S., Abdelrasoul, G. N., Lin, D., Yan, Z., . . . Li, X. S. (2018). Immuno-impedimetric Biosensor for Onsite Monitoring of Ascospores and Forecasting of Sclerotinia Stem Rot of Canola. Scientific Reports, 8(1), 12396 70. Smith, S., Korvink, J. G., Mager, D., & Land, K. (2018). The potential of paper-based diagnostics to meet the ASSURED criteria. RSC Advances, 8(59), 34012-34034 71. Studier, F. W. (1969). Effects of the conformation of single-stranded DNA on renaturation and aggregation. Journal of Molecular Biology, 41(2), 199-209 72. Thévenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1. Biosensors and Bioelectronics, 16(1), 121-131 73. Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249(4968), 505 74. Tweedie, M., Subramanian, R., Lemoine, P., Craig, I., McAdams, E. T., McLaughlin, J. A., . . . Kent, N. (2006, Aug. 30 2006-Sept. 3 2006). Fabrication of impedimetric sensors for label-free Point-of-Care immunoassay cardiac marker systems, with passive microfluidic delivery. Paper presented at the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. 75. Valera, E., Ramón-Azcón, J., Rodríguez, Á., Castañer, L. M., Sánchez, F. J., & Marco, M. P. (2007). Impedimetric immunosensor for atrazine detection using interdigitated μ-electrodes (IDμE's). Sensors and Actuators B: Chemical, 125(2), 526-537 76. Vandenryt, T., Pohl, A., van Grinsven, B., Thoelen, R., De Ceuninck, W., Wagner, P., & Opitz, J. (2013). Combining Electrochemical Impedance Spectroscopy and Surface Plasmon Resonance into one Simultaneous Read-Out System for the Detection of Surface Interactions. Sensors (Basel, Switzerland), 13(11), 14650-14661 77. Vashist, S. K. (2017). Point-of-Care Diagnostics: Recent Advances and Trends. Biosensors, 7(4), 62 78. Vericat, C., Vela, M. E., Benitez, G., Carro, P., & Salvarezza, R. C. (2010). Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chemical Society Reviews, 39(5), 1805-1834 79. Wang, J. (2006). Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosensors and Bioelectronics, 21(10), 1887-1892 80. Wang, L., Veselinovic, M., Yang, L., Geiss, B. J., Dandy, D. S., & Chen, T. (2017). A sensitive DNA capacitive biosensor using interdigitated electrodes. Biosensors and Bioelectronics, 87, 646-653 81. Wang, R., Wang, Y., Lassiter, K., Li, Y., Hargis, B., Tung, S., . . . Bottje, W. (2009). Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta, 79(2), 159-164 82. Wang, Y., Ye, Z., Ping, J., Jing, S., & Ying, Y. (2014). Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection. Biosensors and Bioelectronics, 59, 106-111 83. Wang, Y., Ye, Z., & Ying, Y. (2012). New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors (Basel, Switzerland), 12(3), 3449-3471 84. Weng, J.-H., Lai, C.-Y., & Chen, L.-C. (2019). Microfluidic amperometry with two symmetric Au microelectrodes under one-way and shuttle flow conditions. Electrochimica Acta, 297, 118-128 85. Wolfram Research, I. (©1998–2019a). The Wolfram Functions Site - JacobiCD. Retrieved from http://functions.wolfram.com/09.25.16.0043.01 86. Wolfram Research, I. (©1998–2019b). The Wolfram Functions Site - JacobiSN. Retrieved from http://functions.wolfram.com/09.36.16.0008.01 87. Xu, D., Xu, D., Yu, X., Liu, Z., He, W., & Ma, Z. (2005). Label-Free Electrochemical Detection for Aptamer-Based Array Electrodes. Analytical Chemistry, 77(16), 5107-5113 88. Xu, Y., Zhang, W., Shi, J., Zou, X., Li, Z., & Zhu, Y. (2016). Microfabricated interdigitated Au electrode for voltammetric determination of lead and cadmium in Chinese mitten crab (Eriocheir sinensis). Food Chemistry, 201, 190-196 89. Yan, X.-F., Wang, M.-H., & An, D. (2011). Progress of Interdigitated Array Microelectrodes Based Impedance Immunosensor. Chinese Journal of Analytical Chemistry, 39(10), 1601-1610 90. Yang, X., & Zhang, G. (2007). The voltammetric performance of interdigitated electrodes with different electron-transfer rate constants. Sensors and Actuators B: Chemical, 126(2), 624-631 91. Yuan, X.-Z., Song, C., Wang, H., & Zhang, J. (2010). EIS Equivalent Circuits Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications (pp. 139-192). London: Springer London. 92. Zhang, D., Jiang, J., Chen, J., Zhang, Q., Lu, Y., Yao, Y., . . . Liu, Q. (2015). Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection. Biosens Bioelectron, 70, 81-88 93. Zhang, D., Lu, Y., Zhang, Q., Liu, L., Li, S., Yao, Y., . . . Liu, Q. (2016). Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors and Actuators B: Chemical, 222, 994-1002 94. Zhang, L., Dou, S. X., Liu, H. K., Huang, Y., & Hu, X. (2016). Symmetric Electrodes for Electrochemical Energy-Storage Devices. Adv Sci (Weinh), 3(12), 1600115-1600115 95. Zhou, J., & Rossi, J. (2016). Aptamers as targeted therapeutics: current potential and challenges. Nature Reviews Drug Discovery, 16, 181 96. Zhurauski, P., Arya, S. K., Jolly, P., Tiede, C., Tomlinson, D. C., Ko Ferrigno, P., & Estrela, P. (2018). Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosensors and Bioelectronics, 108, 1-8 97. Zou, Z., Kai, J., Rust, M. J., Han, J., & Ahn, C. H. (2007). Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sensors and Actuators A: Physical, 136(2), 518-526 98. Zou, Z., Lee, S., & Ahn, C. H. (2008). A Polymer Microfluidic Chip With Interdigitated Electrodes Arrays for Simultaneous Dielectrophoretic Manipulation and Impedimetric Detection of Microparticles. IEEE Sensors Journal, 8(5), 527-535 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/742 | - |
| dc.description.abstract | 腫瘤標誌之偵測與抑制成為近年癌症預防及治療的新趨勢,此類標誌常利用操作簡易及低成本之電化學阻抗頻譜法(electrochemical impedance spectroscopy,簡稱EIS)、配合靈敏度及專一性高的適體感測(aptasensing)技術進行量測,於近年之生物分析應用蓬勃發展。然而三極式電化學系統之微小化面臨設計與製程複雜、高成本與低製作良率等問題,且近年廣泛應用於電化學感測技術之二極式指叉狀電極(interdigitated array electrodes,簡稱IDA electrodes)因幾何特性複雜,尚未有根據其帶寬(bandwidth)與間距(gap width)推導其擴散阻抗(diffusion impedance)之文獻。因此本論文以對稱二極式阻抗感測模型之建立為主軸,推導不同幾何之指叉狀電極擴散阻抗公式,發展對稱二極式電極等效電路模型並進行阻抗式適體感測,主要以兩個部分進行探討並分述如下:第一部分著重於指叉狀電極擴散阻抗的理論推導與驗證。利用共形變換(conformal mapping)及圓柱有限長度近似方法(cylindrical finite length approximation)推導不同幾何之指叉狀電極擴散阻抗積分型公式解,並且套用在現今之指叉狀電極電化學系統中。此部分之研究導出能夠針對不同電極帶寬、間距、擴散係數…等參數而直接計算出其擴散阻抗之理論公式,九種不同帶寬與間距之指叉狀電極利用微製程技術製作而成。時間相依(time-dependent)二維擴散之模擬結果證實理論中假想等濃度邊界的存在與理論之可行性,理論所計算之0Hz擴散阻抗與前人研究所推導之極限電流計算公式的倒數有高度線性相關(R2 = 0.992),實驗所得極限電流倒數與計算之0Hz擴散阻抗具高度相關性(R2 = 0.970),所推導的公式能夠精準預測其電化學阻抗頻譜量測結果(R2 ≥ 0.948),且已驗證可透過此理論進行等效電路匹配(equivalent circuit fitting)並成功預測其電極幾何。此部分可提供指叉狀電極於低頻量測區間阻抗變化之解釋,有助於相關領域之學者對於此種系統的擴散行為更進一步的認知與等效電路模型之建立。第二部分推導對稱二極式電極等效電路模型並利用標準金電極(standard Au electrode,簡稱SGE)及指叉狀電極驗證模型可行性與應用於凝血酶(thrombin)及腫瘤標誌MUC1之量測。若利用單一Randles電路進行對稱電極系統之等效電路匹配,則其參數Rct與Rs會是實際值的兩倍、Q0與Y0會是實際值的一半、且n會與實際值相同。此理論利用兩種不同幾何之對稱電極晶片進行驗證,應用於適體感測器之初步概念驗證利用凝血酶(thrombin)作為感測標的且KD為129.4nM。MUC1與其硫醇基修飾過之DNA適體(5’SH-(CH2)6-S2.2)透過三極式適體感測器量測之KD為15.11nM,根據專一性結合模型計算之最大阻抗變化(Bmax)為7.91kΩ,接著發現MUC1之對稱二極式適體感測器量測之KD為15.92nM且Bmax為17.08kΩ,此兩組KD結果相近,而Bmax約為兩倍關係,與推導的模型所得到的結果一致,證明此理論模型應用於生物感測的正確性。利用指叉狀電極製作的凝血酶適體感測器,其電化學阻抗頻譜結果可利用第一部分根據理論所製作的等效電路匹配程式得到準確的參數,且此感測器具有可重複測量六次之再生性(regenerability)以及專一性(specificity)。對稱二極式金電極系統簡單、低成本與適體之高度穩定性極有助於商業化過程之大量生產與客製化。藉由上述之研究成果,期望在未來可利用指叉狀電極進行微小化發展並應用於相關醫療診斷,更甚能實現於個人化醫療與定點照護中。 | zh_TW |
| dc.description.abstract | The inhibition of tumor markers has been a popular research object among the academic society. They are often detected using simple and low-cost techniques such as electrochemical impedance spectroscopy (EIS), which aptamers are occasionally used as the sensing element for achieving high sensitivity and selectivity. This integrated method has flourished in recent years. However, for electrochemical methods, a three electrode setup faces fabrication complexity, high cost and low yield rates during miniaturization. Two electrode impedimetric detection using interdigitated array (IDA) electrodes also faces a problem. Due to its geometry, there hasn’t been any studies that derive its diffusion impedance according to different bandwidths and gap widths. Therefore, this study makes a basis on impedimetric modeling of symmetric two electrode systems. The first part focuses on the derivation and verification of an integral form of solution for IDA diffusion impedance. Conformal mapping and cylindrical finite length approximation methods are used in theory. Simulations are performed for confirming assumptions such as the imaginary constant concentration boundary (ICCB). Nine electrodes of different bandwidths and gap widths are fabricated with their heights and symmetric electrochemical characteristics verified. The calculated zero-frequency impedance showed high correlation with the reciprocal of limiting current calculated from previous studies (R2 = 0.992) and from chronoamperometry experiments (R2 = 0.970). Further evidence for the correctness of theory is established due to the fact that experimental EIS data and calculated impedances are highly consistent (R2 ≥ 0.948 for real and imaginary part). This sheds some light on explaining the phenomenon of diffusion impedance using IDA electrodes in the low frequency spectrum. An equivalent circuit fitting program succeeded to accurately fit the EIS data and parameters such as the ratio of electrode bandwidth to gap width and diffusion coefficient can also be obtained by fitting the data from a single EIS experiment. This can aid researchers in relevant fields model their systems more accurately. In the second part, a symmetric equivalent circuit model is developed, and it is applied it for impedimetric detection of thrombin and a tumor marker MUC1 with a fabricated aptasensor using standard Au electrodes (SGE) and IDA chips. If a single Randles circuit is used for equivalent circuit fitting on a symmetric electrode system, Rct and Rs would be double the real value, Q0 and Y0 would be half the real value, and n would be the same. This relationship is proven using experimental data from two kinds of micro-fabricated symmetric electrode chips. Thrombin is used for the proof of concept and a KD of 129.4nM is obtained using the symmetric electrode setup. MUC1 is detected by the thiolated S2.2 aptamer using a three electrode setup and the KD is 15.11nM. The calculated max binding value (Bmax) according to one-site specific binding model is 7.91kΩ. Using a two electrode setup, the KD is 15.92nM and the Bmax is 17.08kΩ. The calculated KD values for two and three electrode setups are consistent, and the ratio between Bmax is about 2, which corresponds to the developed model. This proves the correctness of the model applied for bio-detection. IDA chips are used for aptasensor fabrication for thrombin detection. The program designed in the first part is used for circuit fitting of EIS data, and accurate parameters are obtained. This sensor has the regenerability for six times of detection and the specificity is also confirmed. Symmetric Au electrode systems have simple and low fabrication cost characteristics. Its integration with highly stable aptamers can contribute to mass production and customization in product commercialization. According to the above results, the author anticipates future developments in relevant medical diagnosis and point-of-care applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:00:24Z (GMT). No. of bitstreams: 1 ntu-108-R06631005-1.pdf: 7864760 bytes, checksum: 5b0f3f1259f2df2213a5f75cdd5a4362 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv Table of Contents vi List of Figures x List of Tables xiv Frequent Abbreviations xv Major Symbols xvi Chapter 1 Introduction 1 1.1 Preface 1 1.2 Research Motivation 3 1.3 Research Aims 5 1.4 Research Framework 6 Chapter 2 Literature Review 8 2.1 EIS in Affinity-Based Biosensors 8 2.1.1 A Brief Introduction of EIS 9 2.1.2 EIS Applied in Affinity-Based Measurements 10 2.2 Impedimetric Biosensors using IDA Electrodes 12 2.2.1 A Brief Introduction of IDA Electrodes 12 2.2.2 Issues in Low Frequency Domain 14 2.3 Equivalent Circuit Fitting for Symmetric Electrode Systems 18 2.4 Miniaturized Electrochemical Systems 19 2.4.1 Implementation Issues of Two and Three Electrode Setups 20 2.4.2 Miniaturized Impedimetric Detection Systems 22 2.5 Affinity-Based Detection using Aptasensors 25 Chapter 3 Diffusion Impedance Modeling for IDA Electrodes 28 3.1 Brief Introduction 28 3.2 Theory 31 3.2.1 Unit Cell and Imaginary Constant Concentration Boundary (ICCB) 32 3.2.2 Finite Diffusion Length Derivation 35 3.2.3 Cylindrical Finite Diffusion Inside Differential Area 41 3.2.4 Dimensionless and Parameterized Form of IDA Diffusion Impedance 44 3.2.5 Limiting Cases with Geometrical Parameters 46 3.3 Materials and Methods 48 3.3.1 Reagents and Materials 48 3.3.2 Design and Fabrication 48 3.3.3 Electrochemical Characterization 50 3.3.4 Simulation of Concentration Profile 51 3.3.5 Impedance Calculation and Circuit Fitting Program 53 3.4 Results and Discussion 54 3.4.1 Interpretation of Normalized IDA Diffusion Impedance 54 3.4.2 Characterization of IDA Electrode Microwell Chip 56 3.4.3 Simulation of Time-Dependent 2D Concentration Profile in Unit Cell 60 3.4.4 Comparison of Limiting Current and Calculated Impedance as ω→0 65 3.4.5 Comparison of Experimental EIS Data and Theoretical Impedances 69 3.4.6 EIS Data Fitting using Different Diffusion Impedance Elements 74 3.5 Summary 81 Chapter 4 EIS Modeling of Symmetric Electrodes for Aptasensing 82 4.1 Brief Introduction 82 4.2 Theory 84 4.2.1 Impedance Calculation for the Randles Circuit 84 4.2.2 Calculations for a Symmetric Randles Circuit 88 4.3 Materials and Methods 90 4.3.1 Reagents and Materials 90 4.3.2 Instruments and Equipment 91 4.3.3 Fabrication of Symmetric Au Electrode Chips 92 4.3.3.1 Electrode Design 93 4.3.3.2 S1813 Photolithography 93 4.3.3.3 E-beam Au Evaporation 94 4.3.4 Experimental Proof of Theory 95 4.3.5 Fabrication of Impedimetric Aptasensor using Two Standard Au Electrodes 98 4.3.6 Fabrication of Regenerable Impedimetric Aptasensor using IDA Chips 99 4.4 Results and Discussion 100 4.4.1 Proof of Theory 100 4.4.2 Optimizing the Operating Sensing Voltage (Einit) 103 4.4.3 Proof of Concept by Thrombin Aptasensing 104 4.4.4 MUC1 Aptasensor using a Three Electrode Configuration 106 4.4.5 MUC1 Aptasensor using Two Symmetric Au Electrodes 107 4.4.6 DNA Sequence Specificity Towards MUC1 and BSA 109 4.4.7 Regenerability and Specificity of Thrombin IDA Aptasensor 111 4.5 Summary 118 Chapter 5 Conclusion 119 5.1 Conclusion 119 5.2 Future Work 121 References 122 Appendices (Supplementary Material) 131 S.1 Detailed Derivations of Equations in Theory 131 S.1.1 Equation (10) to (12) 131 S.1.2 Equation (12) and (13) to (20) 132 S.2 The Potential Symmetry of IDA Electrodes 133 S.3 Diffusion Coefficient Calculation using Randles-Sevcik Equation 134 S.4 Limiting Current of IDA Electrodes 135 S.5 Comparison of Electrode Compositions in Two and Three Electrode Systems 136 S.6 IDA Diffusion Impedance Calculation Program 138 S.7 Real-time Impedimetric MUC1 Aptasensor using Microfluidic IDA Chips 140 S.7.1 Microfluidic System Integration 140 S.7.2 Impedimetric Aptasensing of Target Protein 142 S.7.3 Characterization of IDA Electrode Microfluidic Chip 143 S.7.4 Real-Time EIS Detection Frequency Optimization 144 S.7.5 Real-Time Impedimetric Aptasensing of MUC1 146 S.8 Portable Devices for Integrated Bio-Sensing Platforms 148 S.8.1 Generation α (Z_GENα) 149 S.8.1.1 Preface and Concepts 149 S.8.1.2 Schematic Design 150 S.8.1.3 LabVIEW Data Analysis Design 150 S.8.1.4 Stability Test for Impedance Detection using Z_GENα 152 S.8.2 Generation β (Z_GENβ) 153 S.8.2.1 Preface and Concepts 153 S.8.2.2 Schematic Design 154 S.8.2.3 Data Processing 155 S.8.2.4 Website Server 157 S.8.3 Preliminary Results for Z_GENβ 158 S.8.3.1 Fabrication and Setup Results 158 S.8.3.2 Microfluidic Impedimetric Detection of Bare IDA Electrodes 160 | |
| dc.language.iso | en | |
| dc.subject | 適體感測 | zh_TW |
| dc.subject | 指叉狀電極 | zh_TW |
| dc.subject | 電化學阻抗頻譜 | zh_TW |
| dc.subject | 有限擴散 | zh_TW |
| dc.subject | 對稱電極 | zh_TW |
| dc.subject | aptasensing | en |
| dc.subject | interdigitated array (IDA) electrodes | en |
| dc.subject | electrochemical impedance spectroscopy (EIS) | en |
| dc.subject | finite diffusion | en |
| dc.subject | symmetric electrodes | en |
| dc.title | 對稱電極與指叉狀晶片電化學阻抗模型建立與適體感測應用 | zh_TW |
| dc.title | Electrochemical Impedance Modeling of Symmetric Electrodes and Interdigitated Array Chips for Aptasensing Applications | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何國川(Kuo-Chuan Ho),周家復(Chia-Fu Chou),魏培坤(Pei-Kuen Wei),鄭宗記(Tzong-Jih Cheng) | |
| dc.subject.keyword | 指叉狀電極,電化學阻抗頻譜,有限擴散,對稱電極,適體感測, | zh_TW |
| dc.subject.keyword | interdigitated array (IDA) electrodes,electrochemical impedance spectroscopy (EIS),finite diffusion,symmetric electrodes,aptasensing, | en |
| dc.relation.page | 161 | |
| dc.identifier.doi | 10.6342/NTU201901821 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 7.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
