Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74295Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李百祺 | |
| dc.contributor.author | Shang-Ju Lee | en |
| dc.contributor.author | 李尚儒 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:28:27Z | - |
| dc.date.available | 2024-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-12 | |
| dc.identifier.citation | [1] V. L. Burt, P. Whelton, E. J. Roccella, C. Brown, J. A. Cutler, M. Higgins, M. J. Horan, and D. Labarthe, 'Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991,' Hypertension (Dallas, Tex. : 1979), vol. 25, no. 3, pp. 305-313, Mar. 1995.
[2] A. Benetos, F. Thomas, L. Joly, J. Blacher, B. Pannier, C. Labat, P. Salvi, H. Smulyan, and M. E. Safar, 'Pulse Pressure Amplification: A Mechanical Biomarker of Cardiovascular Risk,' Journal of the American College of Cardiology, vol. 55, no. 10, pp. 1032-1037, Mar. 2010. [3] R. M. Carey and P. K. Whelton, 'Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline,' Annals of internal medicine, vol. 168, no. 5, pp. 351-358, Mar. 2018. [4] A. V. Chobanian, G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo, Jr., D. W. Jones, B. J. Materson, S. Oparil, J. T. Wright, Jr., and E. J. Roccella, 'The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report,' Jama, vol. 289, no. 19, pp. 2560-2572, May 2003. [5] K. Narimatsu and K. Ohmori, 'An algorithm for tonometric absolute blood pressure measurement,' in Proceedings Computers in Cardiology, 1992, pp. 559-562. [6] T. G. Pickering, J. E. Hall, L. J. Appel, B. E. Falkner, J. Graves, M. N. Hill, D. W. Jones, T. Kurtz, S. G. Sheps, and E. J. Roccella, 'Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,' Circulation, vol. 111, no. 5, pp. 697-716, Feb. 2005. [7] R. Ross, 'Atherosclerosis--an inflammatory disease,' The New England journal of medicine, vol. 340, no. 2, pp. 115-126, Jan. 1999. [8] C. Lahoz and J. M. Mostaza, 'Atherosclerosis As a Systemic Disease,' Rev Esp Cardiol., vol. 60, no. 02, pp. 184-195, Feb. 2007. [9] T. Hirai, S. Sasayama, T. Kawasaki, and S. Yagi, 'Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis,' Circulation, vol. 80, no. 1, pp. 78-86, July 1989. [10] M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. é. E. Plante, 'Clinical applications of arterial stiffness; definitions and reference values,' American Journal of Hypertension, vol. 15, no. 5, pp. 426-444, May. 2002. [11] C. Yan, W. Changyun, T. Haitao, and L. X. Teng, 'The relationship between different pulse wave velocity and systolic/diastolic pressure,' in 2008 3rd IEEE Conference on Industrial Electronics and Applications, 2008, pp. 1185-1190. [12] D. J. Hughes, C. F. Babbs, L. A. Geddes, and J. D. Bourland, 'Measurements of Young's modulus of elasticity of the canine aorta with ultrasound,' Ultrasonic Imaging, vol. 1, no. 4, pp. 356-367, Oct. 1979. [13] J. Blacher, R. Asmar, S. Djane, G. M. London, and M. E. Safar, 'Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients,' Hypertension (Dallas, Tex. : 1979), vol. 33, no. 5, pp. 1111-1117, May 1999. [14] R. Williams, A. Needles, E. Cherin, Y.-Q. Zhou, R. M. Henkelman, S. L. Adamson, and F. S. Foster, 'Noninvasive Ultrasonic Measurement of Regional and Local Pulse-Wave Velocity in Mice,' Ultrasound in Medicine & Biology, vol. 33, no. 9, pp. 1368-1375, Sep. 2007. [15] B. W. Beulen, N. Bijnens, G. G. Koutsouridis, P. J. Brands, M. C. Rutten, and F. N. van de Vosse, 'Toward noninvasive blood pressure assessment in arteries by using ultrasound,' Ultrasound Med Biol, vol. 37, no. 5, pp. 788-797, May 2011. [16] A. A. Fassa, K. Wagatsuma, S. T. Higano, V. Mathew, G. W. Barsness, R. J. Lennon, D. R. Holmes, Jr., and A. Lerman, 'Intravascular ultrasound-guided treatment for angiographically indeterminate left main coronary artery disease: a long-term follow-up study,' Journal of the American College of Cardiology, vol. 45, no. 2, pp. 204-211, Jan. 2005. [17] J. Y. Park, A. Lerman, and J. Herrmann, 'Use of fractional flow reserve in patients with coronary artery disease: The right choice for the right outcome,' Trends in cardiovascular medicine, vol. 27, no. 2, pp. 106-120, Feb. 2017. [18] M. Briet, P. Boutouyrie, S. Laurent, and G. M. London, 'Arterial stiffness and pulse pressure in CKD and ESRD,' Kidney International, vol. 82, no. 4, pp. 388-400, Aug. 2012. [19] A. Díaz, C. Galli, M. Tringler, A. Ramírez, and E. I. Cabrera Fischer, 'Reference values of pulse wave velocity in healthy people from an urban and rural argentinean population,' International Journal of Hypertension, vol. 2014, p. 7, Aug. 2014. [20] R. Asmar, A. Benetos, J. Topouchian, P. Laurent, B. Pannier, A. M. Brisac, R. Target, and B. I. Levy, 'Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies,' Hypertension (Dallas, Tex. : 1979), vol. 26, no. 3, pp. 485-490, Sep. 1995. [21] H. Peterson Lysle, E. Jensen Roderick, and J. Parnell, 'Mechanical Properties of Arteries in Vivo,' Circulation Research, vol. 8, no. 3, pp. 622-639, May 1960. [22] J. C. Bramwell and A. V. Hill, 'The velocity of pulse wave in man,' Proc. R. Soc. Lond. B, vol. 93, no. 652, pp. 298-306, Apr. 1922. [23] G. Gosling Raymond and M. Budge Marc, 'Terminology for Describing the Elastic Behavior of Arteries,' Hypertension (Dallas, Tex. : 1979), vol. 41, no. 6, pp. 1180-1182, June 2003. [24] F. Seike, T. Uetani, K. Nishimura, H. Kawakami, H. Higashi, A. Fujii, J. Aono, T. Nagai, K. Inoue, J. Suzuki, S. Inaba, T. Okura, K. Yasuda, J. Higaki, and S. Ikeda, 'Intravascular Ultrasound-Derived Virtual Fractional Flow Reserve for the Assessment of Myocardial Ischemia,' Circulation journal : official journal of the Japanese Circulation Society, vol. 82, no. 3, pp. 815-823, Feb. 2018. [25] M. Benthin, P. Dahl, R. Ruzicka, and K. Lindström, 'Calculation of pulse-wave velocity using cross correlation—Effects of reflexes in the arterial tree,' Ultrasound in Medicine & Biology, vol. 17, no. 5, pp. 461-469, Jan. 1991. [26] M. Tanter and M. Fink, 'Ultrafast imaging in biomedical ultrasound,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 61, no. 1, pp. 102-119, Jan. 2014. [27] H. Hasegawa, K. Hongo, and H. Kanai, 'Measurement of regional pulse wave velocity using very high frame rate ultrasound,' Journal of medical ultrasonics (2001), vol. 40, no. 2, pp. 91-98, Apr. 2013. [28] S. Vasan Ramachandran, 'Pathogenesis of Elevated Peripheral Pulse Pressure,' Hypertension (Dallas, Tex. : 1979), vol. 51, no. 1, pp. 33-36, Jan. 2008. [29] N. Westerhof, N. Stergiopulos, and M. I. M. Noble, 'Law of Laplace,' in Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education: Springer US, 2010, pp. 45-48. [30] J. A. Jensen, 'Users’ guide for the Field II program,' Technical University of Denmark, Aug. 2001. [31] J. Lee Rodgers and W. A. Nicewander, 'Thirteen ways to look at the correlation coefficient,' The American Statistician, vol. 42, no. 1, pp. 59-66, Feb. 1988. [32] P. C. Li, C. J. Cheng, and C. K. Yeh, 'On velocity estimation using speckle decorrelation [blood],' IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control vol. 48, no. 4, pp. 1084-1091, July 2001. [33] W. Li, A. F. van der Steen, C. T. Lancée, I. Céspedes, and N. Bom, 'Blood flow imaging and volume flow quantitation with intravascular ultrasound,' Ultrasound Med Biol., vol. 24, no. 2, pp. 203-214, Feb. 1998. [34] K. L. Gould, 'Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation,' Circ Res., vol. 43, no. 2, pp. 242-253, Aug. 1978. [35] F. K. Schneider, A. Agarwal, Y. M. Yoo, T. Fukuoka, and Y. Kim, 'A fully programmable computing architecture for medical ultrasound machines,' IEEE Trans Inf Technol Biomed, vol. 14, no. 2, pp. 538-540, Mar. 2010. [36] J. Sugawara and H. Tanaka, 'Brachial-Ankle Pulse Wave Velocity: Myths, Misconceptions, and Realities,' Pulse (Basel), vol. 3, no. 2, pp. 106-113, Jan. 2015. [37] A. Benetos, S. Laurent, A. P. Hoeks, P. H. Boutouyrie, and M. E. Safar, 'Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries,' Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, vol. 13, no. 1, pp. 90-97, Jan. 1993. [38] C.-H. Chen, E. Nevo, B. Fetics, H. Pak Peter, C. P. Yin Frank, W. L. Maughan, and A. Kass David, 'Estimation of Central Aortic Pressure Waveform by Mathematical Transformation of Radial Tonometry Pressure,' Circulation, vol. 95, no. 7, pp. 1827-1836, Apr. 1997. [39] P. J. Rousseeuw and B. C. v. Zomeren, 'Unmasking multivariate outliers and leverage points,' Journal of the American Statistical Association, vol. 85, no. 411, pp. 633-639, Sep. 1990. [40] T. Hozumi, K. Yoshida, T. Akasaka, Y. Asami, Y. Ogata, T. Takagi, S. Kaji, T. Kawamoto, Y. Ueda, and S. Morioka, 'Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique.,' Journal of the American College of Cardiology, vol. 32, no. 5, pp. 1251-1259, Nov. 1998. [41] C. M. Cook, Y. Ahmad, M. J. Shun-Shin, S. Nijjer, R. Petraco, R. Al-Lamee, J. Mayet, D. P. Francis, S. Sen, and J. E. Davies, 'Quantification of the Effect of Pressure Wire Drift on the Diagnostic Performance of Fractional Flow Reserve, Instantaneous Wave-Free Ratio, and Whole-Cycle Pd/Pa,' Circulation. Cardiovascular interventions, vol. 9, no. 4, p. e002988, Apr. 2016. [42] K. V. Ramnarine, D. K. Nassiri, P. R. Hoskins, and J. Lubbers, 'Validation of a New Blood-Mimicking Fluid for Use in Doppler Flow Test Objects,' Ultrasound in Medicine & Biology, vol. 24, no. 3, pp. 451-459, Mar. 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74295 | - |
| dc.description.abstract | 心血管疾病近幾年來是國人第二大死因,其中很重要的病因來自於冠狀動脈粥狀動脈硬化,當動脈粥狀硬化造成管徑顯著狹窄或是粥狀硬化斑塊破裂可能會產生急性血栓,進一步發生心血管危症。除了利用非侵入式方法測量血壓做初步心血管疾病的評估外,血管內壓力變化的情形可以更進一步提供可靠的動脈斑塊積累情況。本研究在血管外的實驗中,我們基於超快超音波系統針對回傳射頻訊號進行波束成像,並使用相位追蹤的方法來估算動脈脈波速度,最後根據我們提出的演算流程來得到連續血壓波型。為了驗證結果的正確性,我們製作塑膠血管仿體並搭配自行架設的血流幫浦系統來模擬脈波傳遞,並以壓力傳感器做為血壓計算的驗證,另外也實際收取了21位受試者的頸動脈影像進行壓力分析,與市售的血壓量測儀器相比誤差在3mmHg之內。在血管內壓力量測的實驗中,我們利用超音波模擬軟體Field II以及實際架設旋轉機構來模擬血管內超音波的運作情形,收取沿著旋轉方向的血流超音波射頻訊號,並針對不同角度的射頻訊號進行相關性比較,計算血液橫向位移以及探頭旋轉所造成的去相關斜率,在軟體模擬以及仿體實驗中的結果顯示流速與去相關斜率呈現正向的關係,可依此線性方程式來估算流速,最後搭配流體力學方程式來計算流體在血管中流經不同截面積的壓力損失,進而推算出血流儲備分數,了解動脈斑塊積累的情形。在仿體的驗證上,我們使用壓力傳感器紀錄血管阻塞前以及阻塞後的壓力變化,在不同壓力區間的實驗結果中顯示誤差約在5mmHg以下。由於本研究提出的血管內外血壓量測為估算的方法,並非像臨床有直接測量的儀器,會嚴重受限於壓力公式假設的影響,因此在臨床的應用上會有許多限制,未來仍須經過大量的人體實驗證明方法在臨床應用上的可行性。 | zh_TW |
| dc.description.abstract | Cardiovascular disease (CVD) has been the second leading cause of death in Taiwan in recent years. One of the most crucial issues of CVD is coronary atherosclerosis. When atherosclerosis causes significant stenosis or rupture of atherosclerotic plaque, acute thrombosis may occur and further increase the cardiovascular risk. The blood pressure can be measured extravascularly for cardiovascular disease assessment. In addition, the changes in intravascular blood pressure can also provide an assessment of the condition of arterial plaque. To this end, the primary purpose of this study is to develop extravascular and intravascular methods for continuous blood pressure measurements. In the extravascular experiments, ultrafast imaging was applied and a phase tracking method was developed to estimate the pulse wave velocity (PWV). Finally, the continuous blood pressure waveform can be estimated after considering the PWV and the elasticity properties of the blood vessel. The proposed method was tested both in vitro and in vivo. On human carotid arteries, it was demonstrated that the error was within 3 mmHg compared with that obtained from a commercial instrument. For the intravascular experiments, both numerical simulations and phantom experiments using intravascular ultrasound (IVUS) were performed. Results showed a positive correlation between the flow velocity and the signal decorrelation rate. After linear regression, the fitted velocity can be used to estimate the flow velocity and then the flow reserve fraction (FFR) based on the calculation of the pressure loss of a fluid flowing through different cross-sectional areas in the blood vessel. The error of pressure in this particular experiment was below 5mmHg. The intravascular and extravascular blood pressure measurements we proposed are limited by the hypothesis of pressure equations, unlike clinical used directly measuring instruments, there are many limitations and still need to been proved the feasibility in clinical application through a large number of human experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:28:27Z (GMT). No. of bitstreams: 1 ntu-108-R06945005-1.pdf: 4416459 bytes, checksum: 8e61d21ba113df8e6df695db63cf42a6 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xi Chapter 1 緒論 1 1.1 高血壓症 1 1.2 血壓量測方法 2 1.3 動脈粥狀硬化 4 1.4 動脈硬化評估方法 6 1.5 動脈脈波速度 8 1.6 血流儲備分數 10 1.7 研究動機與目標 11 1.8 論文架構 12 Chapter 2 實驗方法 13 2.1 非侵入式血壓量測方法 13 2.1.1 超快超音波影像系統 14 2.1.2 管壁偵測及追蹤 17 2.1.3 動脈脈波速度估算 18 2.1.4 相對壓力估算 21 2.1.5 絕對壓力估算 21 2.1.6 曲線擬合(model fitting) 24 2.2 血流儲備分數量測方法 26 2.2.1 Field II超音波模擬軟體 26 2.2.2 去相關函數 27 2.2.3 血液流速估算 28 2.2.4 血流儲備分數估算 29 Chapter 3 實驗設計 31 3.1 非侵入式血壓量測實驗設計 31 3.1.1 血管仿體製作 31 3.1.2 血流幫浦系統設計 33 3.1.3 超音波影像系統 34 3.1.4 血管仿體實驗設計 35 3.1.5 人體頸動脈實驗設計 37 3.2 血流儲備分數量測實驗設計 39 3.2.1 高頻超音波影像系統 39 3.2.2 Field II 超音波模擬系統 40 3.2.3 血流循環系統仿體實驗 43 Chapter 4 實驗結果 45 4.1 非侵入式血壓量測實驗 45 4.1.1 仿體實驗 45 4.1.2 人體頸動脈實驗 50 4.2 血流儲備分數量測實驗 53 4.2.1 Field II 超音波模擬實驗 53 4.2.2 仿體實驗 57 Chapter 5 分析與討論 62 5.1 非侵入式血壓量測 62 5.1.1 人體血壓放大效應 62 5.1.2 全域與局部動脈脈波速度比較 63 5.1.3 臨床應用可行性討論 65 5.2 血流儲備分數量測 67 5.2.1 壓力損失公式單位討論 67 5.2.2 誤差來源以及解決方法 68 5.2.3 現有實驗架構與血管內超音波實際臨床應用情形之比較 70 5.2.4 血管內超音波進行流速計算之最佳實現方式 74 5.2.5 臨床應用可行性討論 76 Chapter 6 結論與未來工作 78 6.1 結論 78 6.2 未來工作 80 參考資料 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 流體力學 | zh_TW |
| dc.subject | 相位追蹤 | zh_TW |
| dc.subject | 血壓 | zh_TW |
| dc.subject | 動脈脈波速度 | zh_TW |
| dc.subject | 去相關斜率 | zh_TW |
| dc.subject | 流速 | zh_TW |
| dc.subject | 壓力損失 | zh_TW |
| dc.subject | 血流儲備分數 | zh_TW |
| dc.subject | pressure loss | en |
| dc.subject | phase tracking | en |
| dc.subject | pulse wave velocity | en |
| dc.subject | fluid mechanics | en |
| dc.subject | decorrelation rate | en |
| dc.subject | flow velocity | en |
| dc.subject | blood pressure | en |
| dc.subject | fractional flow reserve | en |
| dc.title | 超音波成像應用於血管內外血壓量測 | zh_TW |
| dc.title | Extravascular and Intravascular Continuous Blood Pressure Measurements by Ultrasound | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈哲州,林信甫,葉佳倫 | |
| dc.subject.keyword | 血壓,相位追蹤,動脈脈波速度,流體力學,去相關斜率,流速,壓力損失,血流儲備分數, | zh_TW |
| dc.subject.keyword | blood pressure,phase tracking,pulse wave velocity,fluid mechanics,decorrelation rate,flow velocity,pressure loss,fractional flow reserve, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201903154 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| Appears in Collections: | 生醫電子與資訊學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-108-1.pdf Restricted Access | 4.31 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
