請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74257完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲 | |
| dc.contributor.author | Hsiang-Ya Chao | en |
| dc.contributor.author | 趙祥雅 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:26:38Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-12 | |
| dc.identifier.citation | [1] Yong Shean Chong and Yong Haur Tay. Abnormal event detection in videos using spatiotemporal autoencoder. In International Symposium on Neural Networks, pages 189–196. Springer, 2017.
[2] Muhammad Umer Farooq, Najeed Ahmed Khan, and Mir Shabbar Ali. Unsupervised video surveillance for anomaly detection of street traffic. International Journal of Advanced Computer Science and Applications (IJACSA), 2017. [3] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through video prediction. In Advances in neural information processing systems, pages 64–72, 2016. [4] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013. [5] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K Roy-Chowdhury, and Larry S Davis. Learning temporal regularity in video sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 733–742, 2016. [6] Jaechul Kim and Kristen Grauman. Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2921–2928. IEEE, 2009. [7] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P Xing. Dual motion gan for future-flow embedded video prediction. In IEEE International Conference on Computer Vision (ICCV), volume 1, 2017. [8] Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao. Future frame prediction for anomaly detection–a new baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6536–6545, 2018. [9] Ziwei Liu, Raymond A Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala. Video frame synthesis using deep voxel flow. In Proceedings of the IEEE International Conference on Computer Vision, pages 4463–4471, 2017. [10] Cewu Lu, Jianping Shi, and Jiaya Jia. Abnormal event detection at 150 fps in matlab. In Proceedings of the IEEE international conference on computer vision, pages 2720–2727, 2013. [11] Weixin Luo, Wen Liu, and Shenghua Gao. Remembering history with convolutional lstm for anomaly detection. In Multimedia and Expo (ICME), 2017 IEEE International Conference on, pages 439–444. IEEE, 2017. [12] Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. Anomaly detection in crowded scenes. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1975–1981. IEEE, 2010. [13] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square error. 2015. [14] Jefferson Ryan Medel and Andreas Savakis. Anomaly detection in video using predictive convolutional long short-term memory networks. arXiv preprint arXiv:1612.00390, 2016. [15] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal crowd behavior detection using social force model. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 935–942. IEEE, 2009. [16] Romero Morais, Vuong Le, Truyen Tran, Budhaditya Saha, Moussa Mansour, and Svetha Venkatesh. Learning regularity in skeleton trajectories for anomaly detection in videos. 2019. [17] Mateus T Nakahata, Lucas A Thomaz, Allan F da Silva, Eduardo AB da Silva, and Sergio L Netto. Anomaly detection with a moving camera using spatio-temporal codebooks. Multidimensional Systems and Signal Processing, 29(3):1025–1054, 2018. [18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015. [19] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video representations using lstms. In International conference on machine learning, pages 843–852, 2015. [20] Waqas Sultani and Jin Young Choi. Abnormal traffic detection using intelligent driver model. In 2010 20th International Conference on Pattern Recognition, pages 324–327. IEEE, 2010. [21] Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world anomaly detection in surveillance videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. [22] Radu Tudor Ionescu, Sorina Smeureanu, Bogdan Alexe, and Marius Popescu. Unmasking the abnormal events in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2895–2903, 2017. [23] Joost Van Amersfoort, Anitha Kannan, Marc’Aurelio Ranzato, Arthur Szlam, Du Tran, and Soumith Chintala. Transformation-based models of video sequences. arXiv preprint arXiv:1701.08435, 2017. [24] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko. Sequence to sequence-video to text. In Proceedings of the IEEE international conference on computer vision, pages 4534–4542, 2015. [25] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033, 2017. [26] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In Advances In Neural Information Processing Systems, pages 613–621, 2016. [27] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In Advances in neural information processing systems, pages 802–810, 2015. [28] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of driving models from large-scale video datasets. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. [29] Yiru Zhao, Bing Deng, Chen Shen, Yao Liu, Hongtao Lu, and Xian-Sheng Hua. Spatio-temporal autoencoder for video anomaly detection. In Proceedings of the 2017 ACM on Multimedia Conference, pages 1933–1941. ACM, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74257 | - |
| dc.description.abstract | 影片異常偵測 (Video anomaly detection) 在影片認知中是一項越來越重要且有發展性的任務,它的目標為自動偵測一段影片中很少發生或非預期的事件。先前研究使用的方法多為非監督式學習,從訓練資料中習得正常影片的特徵表示,異常定義為測試資料遠離正常特徵分佈的事件。在深度學習方面,多數的方法為訓練一自動編碼器 (Autoencoder) 並減少正常影片中的重構錯誤(reconstructions error),測試資料若為正常則可以很好的重構,然而,異常 事件不一定會導致大的重構錯誤。為了解決這個問題,我們提出了一個多幀預測模型 (multi-frame prediction framework),它可以透過放大非預期的改變來改善自動編碼器的缺點,我們用卷積式長短期記憶神經網路(ConvLSTM)做為主要的架構。對於移動路線以及外表變化相關的異常事件,透過實驗結果我們驗證了在多幀模型中用後面預測的幀來計算異常分數的可效性。此外,我們從 YouTube 蒐集了一個新的交通事故資料集,這個資料集包含了不同種類的事故以及多樣的環境,和現有的異常偵測資料集相比,更貼近現實應用、也更加有挑戰性。我們的方法和先前表現最好的模型相比,在物體外表簡單且異常事件為路徑及外表變化相關的情況下表現會提升。 | zh_TW |
| dc.description.abstract | Video anomaly detection which intents to identify rarely-happened or unexpected events is a worthy and developmental problem in video understanding tasks. Most of the previous works deal with the problem in an unsupervised way by learning normal representations of training data and identified the outliers as anomalies. Common deep learning-based methods are reconstruction-based. They train an autoencoder by minimizing the reconstruction errors of regular videos. Nevertheless, abnormal events don't always lead to larger reconstruction errors. To address this issue, We propose using multi-frame prediction framework to enlarge the unexpected change and overcome the generalization property which stems from the use of an autoencoder. We use ConvLSTM model as the multi-frame predictor and show the effectivenes of utilizing latter frames for computing the frame anomaly scores. Experimental results show that our model leads to better performance on motion and appearance deformation irregularities. In addition, we collect a new car crash dataset which contains various car accidents as abnormal events from YouTube for evaluation. Compared to existing anomaly detection datasets, it is a more challenging and practical dataset due to the diversity of events and its different environmental conditions. Our model achieves comparable results in popular existing anomaly detection datasets and outperforms the state-of-the-art on the new proposed dataset. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:26:38Z (GMT). No. of bitstreams: 1 ntu-108-R06942061-1.pdf: 3414857 bytes, checksum: a55a2ecb5b51e8b79d876a91e51c7f17 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Related Work 5 2.1 Anomaly Detection 5 2.2 Video Prediction 7 3 Methodology 8 3.1 Motivation 8 3.2 Convolutional LSTM 8 3.3 Model Architecture 10 3.4 Loss Function 11 3.5 Regularity Score 12 4 Experiments 14 4.1 Datasets 14 4.2 Implementation Details 16 4.3 Result and Analysis 17 4.3.1 Quantitative Comparison Result 17 4.3.2 Discussion of Different Dataset Property 19 4.3.3 Impact of Skip Connection 19 4.3.4 Visualization 20 4.3.5 Simulation Dataset Result 23 5 Future Work 25 6 Conclusion 26 Bibliography 27 | |
| dc.language.iso | en | |
| dc.subject | 影片預測 | zh_TW |
| dc.subject | 影片異常偵測 | zh_TW |
| dc.subject | 卷積式長短期記憶神經網路 | zh_TW |
| dc.subject | video anomaly detection | en |
| dc.subject | ConvLSTM | en |
| dc.subject | video prediction | en |
| dc.title | 以多幀預測模型進行影片異常偵測 | zh_TW |
| dc.title | Video Anomaly Detection via Multi-frame Prediction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王鈺強,賴尚宏,陳祝嵩,賴冠廷 | |
| dc.subject.keyword | 影片異常偵測,卷積式長短期記憶神經網路,影片預測, | zh_TW |
| dc.subject.keyword | video anomaly detection,ConvLSTM,video prediction, | en |
| dc.relation.page | 30 | |
| dc.identifier.doi | 10.6342/NTU201903284 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
