Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74247
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬力歐(Mario Hofmann)
dc.contributor.authorChong-Yo Liuen
dc.contributor.author劉重佑zh_TW
dc.date.accessioned2021-06-17T08:26:09Z-
dc.date.available2020-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation1 Wang, Z. (ACS Publications, 2000).
2 Watts, J. F. & Wolstenholme, J. An introduction to surface analysis by XPS and AES. An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH, May 2003., 224 (2003).
3 Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS 2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
4 Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS 2. Nat. Nanotechnol. 8, 497 (2013).
5 Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695-3700 (2012).
6 Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136-1140 (2012).
7 Lin, T. et al. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosensors and Bioelectronics 62, 302-307 (2014).
8 Magda, G. Z. et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci Rep 5, 14714 (2015).
9 Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today 20, 116-130 (2017).
10 Kim, H. et al. Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology 28, 36LT01 (2017).
11 Yang, P. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nature communications 9, 979 (2018).
12 Zhao, W. et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 13, 5627-5634 (2013).
13 Amani, M. et al. Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides. Nano Lett. 16, 2786-2791 (2016).
14 Klein, A., Tiefenbacher, S., Eyert, V., Pettenkofer, C. & Jaegermann, W. Electronic band structure of single-crystal and single-layer WS 2: Influence of interlayer van der Waals interactions. Physical Review B 64, 205416 (2001).
15 Li, Y. et al. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study. Nanotechnology 29, 124001 (2018).
16 Cong, C. et al. Synthesis and Optical Properties of Large‐Area Single‐Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition. Advanced Optical Materials 2, 131-136 (2014).
17 Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific reports 3, 1608 (2013).
18 Liang, F. et al. Raman spectroscopy characterization of two-dimensional materials. Chinese Physics B 27, 037802 (2018).
19 Graves, P. & Gardiner, D. Practical raman spectroscopy. Springer (1989).
20 Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors: Fivth Edition. (World Scientific Publishing Company, 2009).
21 Fultz, B. & Howe, J. M. Transmission electron microscopy and diffractometry of materials. (Springer Science & Business Media, 2012).
22 Riviere, J. C. & Myhra, S. Handbook of surface and interface analysis: methods for problem-solving. (CRC press, 2009).
23 Elías, A. L. et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 7, 5235-5242 (2013).
24 McCreary, K. M., Hanbicki, A. T., Jernigan, G. G., Culbertson, J. C. & Jonker, B. T. Synthesis of large-area WS 2 monolayers with exceptional photoluminescence. Sci Rep 6, 19159 (2016).
25 Tongay, S. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185-3190 (2014).
26 Yun, S. J. et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 9, 5510-5519 (2015).
27 Rong, Y. et al. Controlling sulphur precursor addition for large single crystal domains of WS 2. Nanoscale 6, 12096-12103 (2014).
28 Xie, Y. et al. NaCl-Assisted CVD Synthesis, Transfer and Persistent Photoconductivity Properties of Two-Dimensional Transition Metal Dichalcogenides. MRS Advances 3, 365-371 (2018).
29 Li, S. et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today 1, 60-66 (2015).
30 Ovchinnikov, D., Allain, A., Huang, Y.-S., Dumcenco, D. & Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 8, 8174-8181 (2014).
31 Wang, S. et al. Bottom-up synthesis of WS2 nanosheets with synchronous surface modification for imaging guided tumor regression. Acta biomaterialia 58, 442-454 (2017).
32 Zhang, Y. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS nano 7, 8963-8971 (2013).
33 Adamson, A. W. & Gast, A. P. Physical chemistry of surfaces. Vol. 15 (Interscience New York, 1967).
34 Zhang, K. et al. Considerations for Utilizing Sodium Chloride in Epitaxial Molybdenum Disulfide. ACS Appl. Mater. Interfaces 10, 40831-40837 (2018).
35 Ling, X. et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464-472 (2014).
36 Aljarb, A. et al. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 11, 9215-9222 (2017).
37 Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nature communications 4, 2642 (2013).
38 Van Der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554 (2013).
39 Kim, M. S. et al. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 10, 2399-2405 (2016).
40 Mak, K. F. et al. Tightly bound trions in monolayer MoS 2. Nat. Mater. 12, 207 (2013).
41 Newaz, A. et al. Electrical control of optical properties of monolayer MoS2. Solid State Communications 155, 49-52 (2013).
42 Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831-2836 (2013).
43 Nan, H. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738-5745 (2014).
44 Gutiérrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447-3454 (2012).
45 Yao, H. et al. Significant photoluminescence enhancement in WS 2 monolayers through Na 2 S treatment. Nanoscale 10, 6105-6112 (2018).
46 Fang, H. et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991-1995 (2013).
47 Choi, S. H., Kim, Y. J., Yang, W. & Kim, K. K. Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide. Journal of the Korean Physical Society 74, 1032-1038 (2019).
48 Yun, W. S., Han, S., Hong, S. C., Kim, I. G. & Lee, J. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X 2 semiconductors (M= Mo, W; X= S, Se, Te). Physical Review B 85, 033305 (2012).
49 Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews 44, 3691-3718 (2015).
50 Zeng, L. et al. High-responsivity UV-vis photodetector based on transferable WS 2 film deposited by magnetron sputtering. Sci Rep 6, 20343 (2016).
51 Zhong, H. et al. Interfacial properties of monolayer and bilayer MoS 2 contacts with metals: Beyond the energy band calculations. Sci Rep 6, 21786 (2016).
52 Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Science advances 2, e1600069 (2016).
53 Kasap, S. O. & Sinha, R. K. Optoelectronics and photonics: principles and practices. Vol. 340 (Prentice Hall New Jersey, 2001).
54 Lan, C. et al. Wafer-scale synthesis of monolayer WS 2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 11, 3371-3384 (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74247-
dc.description.abstract在本論文中我將探討大面積生長二硫化鎢的方式,以及其光激發光增強的現象,並將我們自己製備的二硫化鎢薄膜製成高靈敏的光感測器。
第一個主題是試圖找到一種大面積且高效率生長二硫化鎢方式,文中討論不同化學氣相層積方法,分別是傳統化學氣相層積和對蓋式化學氣相層積,並且討論對在不同表面能量的基板下生長的情形,最後透過預先層積氧化鎢薄膜在石墨片上,作為均勻前驅物的來源,並用鈉原子作為催化劑,成功提出了一種新穎的二硫化鎢生長方式,利用此方法可以一次生成七十平方公分由一百微米大的單晶組成的二硫化鎢薄膜。
第二個主題是探討由鈉作為催化劑生成的二硫化鎢光激發光增強的現象。我們發現由於生長過程中有鈉的參與,最後生成的二硫化鎢及基板中間有鈉的化合物,並輕微的參雜在二硫化鎢之中,因此導致二硫化鎢的複合機制改變,提高了載子複合效率,並且其光激發光強度超過機械剝離二硫化鎢的四倍。
第三個主題是我們利用自己製備的材料製成光感測器,由於單晶的尺寸大於一百微米,我們可以很輕易的將元件做在一個單晶之上,我們製作的二硫化鎢光偵測器響應度達4×〖10〗^5A/W,響應時間短於200微秒,這展現此光感測器的高工作效率。我們預期這個工作將對未來二維材料生長、應用及發展有重要影響。
zh_TW
dc.description.abstractIn this thesis, I will discuss the large area synthesis of monolayer tungsten disulfide (WS2), its optical characterization and application to highly sensitive photodetectors.
We first try to find a large-area and highly-efficient method for synthesizing WS2. The different chemical vapor deposition methods are discussed and a novel method is proposed where a pre-deposited tungsten film acts as a source of uniform precursor resulting in WS2 films that cover 70 square centimeters in one CVD step.
We then investigate the optical characteristics of the thus produced material and observe a photoluminescence enhancement of WS2 generated by sodium catalyst (WS2-Na). The compound is slightly doped, thus causing a change in the recombination mechanism of the WS2 and improving the carrier recombination efficiency. The WS2-Na photoluminescence intensity is four times higher than that of mechanically exfoliated WS2.
Finally, we use our synthesized WS2 to make photodetector. Since the size of the single crystal is larger than one hundred micrometers, we can easily make single-crystal devices. The WS2 photodetector we produced has a high performance with a responsivity that reaches 4×〖10〗^5A/W and response times that are shorter than 200 microseconds.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:26:09Z (GMT). No. of bitstreams: 1
ntu-108-R06245015-1.pdf: 4586610 bytes, checksum: 50fa7c73d7fe572e60fa5f0238a4caa1 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
Chapter 1 Introduction 1
1.1 Review of the TMDs material 1
1.2 WS2 physical property 2
1.3 Motivation 5
Chapter 2 Experimental set up and process 6
2.1 Experimental set up 6
2.1.1 Raman spectrum system 6
2.1.2 Photoluminescence spectrum system 6
2.1.3 Transmission electron microscope (TEM) 8
2.1.4 Low Voltage Electron Microscope 10
2.1.5 X-ray photoelectron spectroscopy (XPS) 11
2.1.6 Auger Electron Microprobe (AEM) 13
2.2 Experimental process 15
2.2.1 Chemical Vapor Deposition (CVD) 15
2.2.2 Electron -beam evaporator 16
2.2.3 Photolithography 17
Chapter 3 Centimeter-scale synthesis of monolayer WS2 by face to face chemical vapor deposition 18
3.1 Introduction 18
3.2 Experiments and method 20
3.2.1 Face to Face CVD method 20
3.2.2 Conventional point-to-face CVD method 21
3.2.3 PMMA-assisted transfer 22
3.3 Results and discussion 23
3.3.1 Choose a suitable substrate 24
3.3.2 The catalyst and seed 25
3.3.3 Discuss four different CVD precursor and methods 27
3.3.4 Photoluminescence enhance 29
3.4 Summary 37
Chapter 4 Photodetectors 38
4.1 Introduction 38
4.2 Experiments and methods 40
4.2.1 Device fabrication 40
4.2.2 Photodetector electrical property measurement 41
4.3 Quality factor of photodetectors 42
4.3.1 Responsivity 42
4.3.2 External quantum efficiency 43
4.3.3 Detectivity 43
4.4 Results and discussion 44
4.4.1 Photocurrent 44
4.4.2 Response time 45
4.4.3 Responsivity 46
4.5 Summary 47
Chapter 5 Conclusion 49
REFERENCE 50
dc.language.isoen
dc.subject量子產額zh_TW
dc.subject光致發光zh_TW
dc.subject光感測器zh_TW
dc.subject化學氣相層積zh_TW
dc.subject二硫化鎢zh_TW
dc.subjecttungsten disulfideen
dc.subjectchemical vapor depositionen
dc.subjectquantum yielden
dc.subjectphotoluminescenceen
dc.subjectphotodetectoren
dc.title對覆蓋式化學氣相層積生成公分級單層二硫化鎢使用於製作高靈敏光偵測器zh_TW
dc.titleCentimeter-scale synthesis of monolayer WS2 for high performance photodetectors by face to face chemical vapor depositionen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor謝雅萍(Ya-Ping Hsieh)
dc.contributor.oralexamcommittee陳永芳(Yang-Fang Chen),丁初稷(Chu-Chi Ting)
dc.subject.keyword二硫化鎢,化學氣相層積,量子產額,光致發光,光感測器,zh_TW
dc.subject.keywordtungsten disulfide,chemical vapor deposition,quantum yield,photoluminescence,photodetector,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201902790
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved