請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74244
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃維信 | |
dc.contributor.author | Li-Hsiang Huang | en |
dc.contributor.author | 黃豊翔 | zh_TW |
dc.date.accessioned | 2021-06-17T08:26:01Z | - |
dc.date.available | 2022-08-19 | |
dc.date.copyright | 2019-08-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-12 | |
dc.identifier.citation | Abbaspour M, Hassanabad MG, “Comparing Sloshing Phenomena in a Rectangular Container with and without a Porous Medium Using Explicit Nonlinear 2-D BEM-FDM,” Scientia Kranica Trans. B-Mech. Eng. 17, pp. 93-101, 2010.
Carman PC, Flow of Gases Through Porous Media, Academic Press, 1956. Chang PM, Lou JYK, Lutes LD, “Model identification and control of a tuned liquid damper,” Engineering Structures. 20(3), pp. 155-163, 1998. Clough RW, Penzien J, Dynamic of Structures, McGraw-Hill, 1993. Currie IG, Fundamental mechanics of fluids, CRC Press, 2003. Fujino Y, Pacheco BM, Chaiseri P, Sun LM, “Parametric Studies on Tuned Liquid Damper (TLD) Using Circular Containers by Free-Oscillation Experiments,” Structural Engineering/Earthquake Engineering, Japan Society of Civil Engineers. 5(2), pp. 381-391, 1988. Faltinsen OM, Timokha AN, Sloshing, Cambridge University Press, 2009. Faltinsen OM, Timokha AN, “Natural sloshing frequencies and modes in a rectangular tank with a slat type screen,” Journal of Sound and Vibration. 330(7), pp. 1490-1503, 2011. Graham EW, Rodrigues BM, “The charateristics of fuel motion which affect airplane dynamics,” Applied Mechnics. 16, pp. 381-388, 1952. Hamelin JA, Love JS, Tait MJ, Wilson JC, “Tuned liquid damper with a Keulegan-Carpenter number-dependent screen drag coefficient,” Journal of Fluids and Structures. 43, pp. 271-286, 2013. Ifiynenia K, Jiang Y, “Flow Through Porous Media of Packed Spheres Saturated With Water,” Journal of Fluids Enginerring. 161, pp. 164-170, 1994. Jin H, Liu Y, Li HJ, “Experimental study on sloshing in a tank with an inner horizontal perforated plate,” Ocean Engineering. 82, pp. 75-84, 2014. Love JS, Haskett TC, “Nonlinear modelling of tuned sloshing dampers with large internal obstructions: Damping and frequency effects,” Journal of Fluids and Structures. 79, pp. 1-13, 2018. Macdonal IF, Il-Sayed MS, Mow K, Dullient FAL, “Flow through Porous Media-the Ergun Equation Revisited,” Industrial & Engineering Chemistry Fundamentals. 18(3), pp. 199-208, 1979. Nayak SK, Biswal KC, “Fluid damping in rectangular tank fitted with various internal objects-an experimental investigation,” Ocean Engineering. 108, pp. 552-562, 2015. Niedl AD, Bejan A, Convection in Porous Media, Springer, 2013. Sun LM, Semi-Analytical Modelling of Tuned liquid Damper (TLD) with Emphasis on Damping of Liquid Sloshing, Ph.D. Thesis, University of Tokyo, 1991. Tsao WH, Hwang WS, “Tuned liquid damper with porous media,” Ocean Engineering. 167, pp. 55-64, 2018. Warburton GB, “Optimum absorber parameters for various combinations of response and excitation parameters,” Earthquake Engineering and Structural Dynamics. 10, pp. 381-401, 1982. Warnitchai P, Pindaew T, “Modelling of liquid sloshing in rectangular tanks with flow-damping devices,” Engineering Structures. 20(7), pp. 593-600, 1998. Yu JK, Wakahara T, Reed DA, “A Non-Linear Numerical Model of the Tuned Liquid Damper,” Earthquake Engineering and Structural Dynamics. 28, pp. 671-686, 1999. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74244 | - |
dc.description.abstract | 本文研究具多孔材質之液體阻尼器的沖激行為,並以實驗的方式驗證理論的可靠性。假設流場為非旋性場及不可壓縮流,使得流場的速度勢滿足拉普拉斯方程式,並假設流場內的消能機制滿足達西定律,邊界條件為不可穿透性及自由液面的運動及動力條件,進而求解出暫態及穩態的速度勢。接下來建立阻尼器的等效模型,以方便分析阻尼器的動力行為。實驗方面,分別以衝擊及簡諧運動的方式驗證暫態及穩態的動力與水波特性。 | zh_TW |
dc.description.abstract | The objective of the present thesis is to investigate the characteristics of tuned liquid dampers (TLD) with porous media. Assume that the flow in a tank is irrotational, incompressible and the damping force is proportional to fluid velocity based on Darcy’s law. TLDs with porous media represent the equivalent mechanical system that produces the equivalent forces developed by the sloshing fluid. The experimental studies involve impulse and sinusoidal excitations based on natural frequencies. Also, the energy dissipation has been studied. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:26:01Z (GMT). No. of bitstreams: 1 ntu-108-R06525069-1.pdf: 4493407 bytes, checksum: 5225c0741693b88dbf60fd275aec92db (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究動機及背景 1 1.2 文獻回顧 2 1.3 研究目的與方法 3 第二章 基本原理與理論分析 5 2.1 多孔材質(porous media) 5 2.2 達西定律(Darcy’s Law) 6 2.3 線性波解析解 8 2.3.1控制方程式 8 2.3.2邊界條件 9 2.3.3齊性解(Homogeneous solution) 10 2.3.4特解(Particular solution) 13 2.3.5流速分布 16 2.4 等效機械模型 18 2.4.1穩態等效模型 19 2.4.2暫態等效模型 22 2.4.3共振時等效模型簡化 24 第三章 振動實驗及理論驗證 28 3.1 實驗架構 28 3.1.1荷重元組件測試 30 3.2 實驗流程與項目 32 3.3 衝擊實驗 33 3.3.1實驗步驟 33 3.3.2實驗結果 34 3.4 衝擊實驗與理論驗證 35 3.5 簡諧地表運動實驗 38 3.5.1實驗結果 39 3.6 簡諧地表運動理論驗證 42 3.6.1線性理論驗證 42 3.6.2穩態過程阻尼因子 44 第四章 結論與展望 54 4.1 結論 54 4.2 展望 54 參考文獻 56 附錄A 定水頭滲透實驗 58 附錄B 振動實驗之設備與儀器 60 B.1 多孔材質 60 B.2 振動平台特性 62 B.3 波高量測 62 B.4 擷取系統與感測器 63 附錄C 水槽內部壓力推導 65 | |
dc.language.iso | zh-TW | |
dc.title | 具多孔材質之諧調液體阻尼器之特性研究 | zh_TW |
dc.title | Study on Tuned Liquid Dampers with Porous Media | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃良雄,黃心豪 | |
dc.subject.keyword | 沖激,勢流理論,諧調液體阻尼器,多孔材質,等效機械系統, | zh_TW |
dc.subject.keyword | Sloshing,Potential flow theory,Tuned Liquid Dampers,Porous Media,Equivalent Mechanical System, | en |
dc.relation.page | 65 | |
dc.identifier.doi | 10.6342/NTU201903322 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 4.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。