請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74229完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳克強(Ke-Qiang Wu) | |
| dc.contributor.author | YI-SUI HUANG | en |
| dc.contributor.author | 黃一穗 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:25:20Z | - |
| dc.date.available | 2024-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-12 | |
| dc.identifier.citation | Bae, G. and Choi, G. (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol. 59, 281-311
Barnes, S.A., Nishizawa, N.K., Quaggio, R.B., Whitelam, G.C.,and Chua, N.H. (1996) Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A–mediated change in plastid development. Plant Cell. 8, 601–615 Chanarat, S. and Sträßer, K. (2013) Splicing and beyond: the many faces of the Prp19 complex. Biochim Biophys Acta. 1833,2126-34 Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16,735-43 Deng, X., Lu, T., Wang, L., Gu, L., Sun, J., Kong, X., Liu, C. and Cao, X. (2016) Recruitment of the NineTeen Complex to the activated spliceosome requires AtPRMT5. Proc. Natl Acad. Sci. USA, 113, 5447–5452 Hamazato, F., Shinomura, T., Hanzawa, H., Chory, J., and Furuya, M. (1997). Fluence and wavelength requirements for Arabidopsis CAB gene induction by different phytochromes. Plant Physiol. 115, 1533–1540 Hirayama, T. and Shinozaki, K. (1996) A cdc5+ homolog of a higher plant, Arabidopsis thaliana. PNAS. 93,13371-13376 Hnilicová, j., Hozeifi, S., Dušková , E., Icha, J., Tománková , T. and Staněk, D. (2011) Histone deacetylase activity modulates alternative splicing. PLoS ONE. 6, e16727 Ifuku, K. (2014) The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. Plant Physiol Biochem. 81, 108-14. Johnson, E., Bradley, M., Harberd, N.P., and Whitelam, G.C. (1994). Photoresponses of light-grown phyA mutants of Arabidopsis. Plant Physiol. 105, 141–149 Johnson. L, Mollah, S, Garcia, B.A., Muratore, T.L., Shabanowitz. J., Hunt, D.F. and Jacobsen, S.E. (2004) Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res. 32, 6511-6518 Kunkel, T., Neuhaus, G., Batschauer, A., Chua, N.H., and Schäfer, E. (1996). Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts. Plant J. 10, 625–636 Kuno, N., Muramatsu, T., Hamazato, F. and Furuya, M. (2000) Identification by large-scale screening of phytochrome-regulated genes in etiolated seedlings of Arabidopsis using a fluorescent differential display technique. Plant Physiol 122: 15–24 Kwon, Y.J., Park, M.J., Kim, S.G., Baldwin, I.T. and Park, C.M. (2014) Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biol. 14, 136–151 Lamesch, P., T. Z. Berardini, D. Li, D. Swarbreck, C. Wilks, R. Sasidharan, R. Muller, K. Dreher, D. L. Alexander and M. Garcia-Hernandez (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 Li, S., Liu, K., Zhou, B., Li, M., Zhang, S., Zeng, L., Zhang C, and Yu, B. (2018) MAC3A and MAC3B, Two Core Subunits of the MOS4-Associated Complex, Positively Influence miRNA Biogenesis. Plant Cell. 30,481-494 Liu, X., Chen, C., Wang, K., Luo, M., Tai, R., Yuan, L., Zhao, M., Yang, S., Tian, G., Cui, Y., Hsieh, H. and Wu, K. (2013) PHYTOCHROME INTERACTING FACTOR3 associates with the Histone Deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell. 25, 1258–1273. Li, Y., Yang, J., Shang, X., Lv, W., Xia, C., Wang, C., Feng, J., Cao, Y., He, H., Li, L. and Ma, L. (2019) SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. New Phytol. 10, 1111 Luco, R.F, Allo, M., Schor, I.E., Kornblihtt, A.R. and Tom Misteli, T. (2011) Epigenetics in Alternative Pre-mRNA Splicing. Cell .11, 056 Luco, RF., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Misteli, T. (2010) Regulation of Alternative Splicing by Histone Modifications. Science. 327,996–1000. Ma, L., Li, J., Qu. L., Hager, J., Chen, Z., Zhao, H. and Deng, X.W. (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589–2607 Mancini, E., S. E. Sanchez, A. Romanowski, R. G. Schlaen, M. Sanchez-Lamas, P. D. Cerdan and M. J. Yanovsky (2016) Acute effects of light on alternative splicing in light-grown plants. Photochem. Photobiol. 92, 126–133 Marquez, Y., Brown, J.W., Simpson, C., Barta, A. and Kalyna, M. (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 22, 1184–1195 Monaghan, J., Xu, F., Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y. and Li, X. (2009) Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog. 5: e1000526 Naeem H. Syed, Maria Kalyna, Yamile Marquez, Andrea Barta, and John W.S. Brown. (2012)Alternative splicing in plants coming of age. Trends Plant Sci. 17, 616–623 Niu L., Lu, F., Pei, Y., Liu, C. and Cao, X. (2007) Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Rep. 8, 1190–1195 Niu, L., Zhang, Y., Pei, Y., Liu, C. and Cao, X. (2008) Redundant Requirement for a Pair of PROTEIN ARGININE METHYLTRANSFERASE4 Homologs for the Proper Regulation of Arabidopsis Flowering Time. Plant Physiol. 148,490-503 Pajoro, A., Severing, E., Angenent, G.C. and Immink, R.G.H. (2017) Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biologyvolume. 18, 102 Palma, K., Zhao, Q., Cheng, Y.T., Bi, D., Monaghan, J., Cheng, W., Zhang, Y. and Li, X. (2007) Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev. 21, 1484–1493 Pei, Y., Niu, L., Lu, F., Liu, C., Zhai, J., Kong, X. and Cao, X. (2007) Mutations in the Type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis. Plant Physiol. 144, 1913-1923 Petrillo, E., M. A. Godoy Herz, A. Fuchs, D. Reifer, J. Fuller, M. J. Yanovsky, C. Simpson, J. W. Brown, A. Barta, M. Kalyna and A.R. Kornblihtt (2014) A chloroplast retrograde signal regulates nuclear alternative splicing. Science 344, 427–430 Poppe, C., Hangarter, R.P., Sharrock, R.A., Nagy, F., and Schäfer, E. (1996) The light-induced reduction of the gravitropic growth orientation of seedlings of Arabidopsis thaliana (L.) Heynh. is a photomorphogenic response mediated synergistically by the far-red–absorbing forms of phytochrome A and B. Planta. 199, 511–514 Rodermel, S. and Park, S. (2003) Pathways of intracellular communication: tetrapyrroles and plastid-to-nucleus signaling. Bioessays. 25, 631-6. Schor, I.E., Rascovan, N., Pelisch, F., Allo, M., and Kornblihtt, A.R. (2009). Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl. Acad. Sci. USA, 106, 4325–4330 Seo, P. J., Park, M.J., Lim, M.H., Kim, S.G., Lee, M., Baldwin, I.T. and Park, C.M. (2012) A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell. 24, 2427–2442 Shikata, H., Hanada, K., Ushijima, T., Nakashima, M., Suzuki, Y. and Matsushita, T. (2014) Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proc. Natl. Acad. Sci. USA, 111, 18781–18786 Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M. and Furuya, M. (1996) Action spectra for phytochrome A– and B–specific photoinhibition of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 93, 8129–8133. Sibout, R., Sukumar, P., Hettiarachchi, C., Holm, M., Muday, G.K. and Hardtke, C.S. (2006) Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet. 2, e202 Sims, R.J. 3rd, Millhouse, S., Chen, C.F., Lewis, B.A., Erdjument-Bromage, H., Tempst, P., Manley, J.L. and Reinberg, D. (2007) Recognition of trimethylated histone H3 Lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell. 28, 665–676 Sheerin, D.J. and Hiltbrunner, A. (2017) Molecular mechanisms and ecological function of far‐red light signaling. Plant Cell Environ. 40, 2509-2529 Tang, Y., Liu, X., Liu, X., Li, Y., Wu, K. and Hou, X. (2017) Arabidopsis NF-YCs mediate the light control of hypocotyl elongation via modulating histone acetylation. Mol Plant. 10,260-273 Terzaghi, W.B., and Cashmore, A.R. (1995). Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 445–474. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature. 439, 811-816 Wiborg, J., O’Shea, C. and Skriver, K. (2008) Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem. J. 413, 447–457 Yu S. (2017) The role of MOS4 participating in flowering time regulation in Arabidopsis. National Taiwan University Master Thesis Vedalankar, P. and Tripathy, B.C. (2019) Evolution of light-independent protochlorophyllide oxidoreductase. Protoplasma. 256, 293-312. Zhang, K., Sridhar,V.V., Zhu, J., Kapoor, A. and Zhu, J.K. (2007) Distinctive Core Histone Post-Translational Modification Patterns in Arabidopsis thaliana. PLoS one 2,e1210 Zhang, S., Liu, Y. and Yu, B. (2014) PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet. 10: e1004841 Zhang, S., Xie, M., Ren, G., and Yu, B. (2013) CDC5, a DNA bindingprotein, positively regulates posttranscriptional processing and ortranscription of primary microRNA transcripts. Proc. Natl. Acad. Sci. USA, 110, 17588–17593. Zhao, L., Peng, T., Chen, C., Gu, D., Li, T., Ji, R., Zhang, D., Tu, Y., Wu, K. and Liu, X. (2019) HY5 interacts with the histone deacetylase HDA15 to repress hypocotyl celelongation in photomorphogenesis. Plant Physiol. 180, 1450–1466 Zhou, D.X., Kim, Y.J., Li, Y.F., Carol, P. and Mache, R. (1998) COP1b, an isoform of COP1 generated by alternative splicing, has a negative effect on COP1 function in regulating light-dependent seedling development in Arabidopsis. Mol. Gen. Genet. 257, 387–391 Zhou, H.L., Luo, G., Wise, J.A. and Lou, H. (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Research. 42, 701–713 Zhao, L., Peng, T., Chen, C., Gu, D., Li, T., Ji, R., Zhang, D., Tu, Y., Wu, K. and Liu, X. (2019) HY5 interacts with the histone deacetylase HDA15 to repress hypocotyl celelongation in photomorphogenesis. Plant Physiol. 180, 1450–1466 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74229 | - |
| dc.description.abstract | 植物的光敏色素會通過調節下游基因的表達來控制多個光相關的生理過程,但關於光敏色素在光相關的基因剪接中扮演什麼作用知之甚少。MOS4-Associated Complex(MAC)是一個會與剪接體結合的高度保守的核蛋白複合物。前人的研究中發現,MAC 的核心亞基 MAC3A、MAC3B 和 MOS4 與組蛋白去乙烯化酶 HDA15能交互作用。HDA15 會參與調控光相關的葉綠素生物合成和下胚軸伸長。我們的研究發現,在黑暗下 MAC3A、MAC3B 和 MOS4 會負調節葉綠素生物合成及在遠紅光下會影響下胚軸的生長。此外,mac3a mac3b 雙突變體中光相關基因 HYH、HFR1、PRR7 和 PAPP5 的剪接在遠紅光下也發生了改變。綜合以上結果,我們的研究發現 MAC3A 和 MAC3B 可能通過調節光相關基因的剪接從而影響遠紅光下下胚軸的生長。 | zh_TW |
| dc.description.abstract | Phytochromes control multiple light-dependent physiological processes by regulating gene expression, but little is known about the roles of phytochromes in
controlling pre-mRNA splicing in response to light. The MOS4-associated complex(MAC) is a highly conserved nuclear protein complex associated with the spliceosome. Previous studies indicate that the core subunits of MAC, MAC3A, MAC3B and MOS4, can interact with the histone deacetylase HDA15 involved in light dependent chlorophyll biosynthesis and hypocotyl elongation. In this study, we found that MAC3A, MAC3B and MOS4 negatively regulate chlorophyll biosynthesis in the dark and hypocotyl elongation under far-red light. In addition, the alternatively spliced transcripts of the light regulated genes, HYH, HFR1, PRR7 and PAPP5, are altered in the mac3a mac3b double mutant under far-red light. Taken together, our studies indicate that MAC3A and MAC3B may play an essential role in far red light regulated hypocotyl elongation through regulating the splicing of light regulated genes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:25:20Z (GMT). No. of bitstreams: 1 ntu-108-R05b42029-1.pdf: 2678467 bytes, checksum: 6d3017c1b96eee19ef13beee86aa1277 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 ii
ABSTRACT iii List of Figures vi List of Supplementary Figures vii List of Supplementary Tables viii Chapter 1 Introduction 1 1.1 Light regulation of plant development 1 1.2 Alternative splicing and light responses 2 1.3 Histone modifications 4 1.4 Histone modifications and alternative splicing 6 1.5 MOS4-ASSOCIATED COMPLEX 7 Chapter 2 Materials and Methods 11 2.1 Plant materials 11 2.2 Generating MAC3A-GFP and MAC3B-GFP transgenic plants 12 2.3 DNA extraction 13 2.4 RNA isolation 14 2.5 DNase treatment 15 2.6 Reverse transcription 15 2.7 Real-time PCR analysis 16 2.8 Protoplast transformation 16 2.9 Protochlorophyllide determination assays 19 2.10 Co-immunoprecipitation assays 20 Chapter 3 Results 22 3.1 Expression and subcellular localization of MAC3A and MAC3B 22 3.2 HDA15 interacted with MAC3A and MAC3B in vivo 22 3.3 Identification of mac3a hda15 and mac3b hda15 double mutants 23 3.4 MAC3A and MAC3B regulate protochlorophyllide biosynthesis 23 3.5 The hypocotyl elongation phenotypes of hda15, mac3a, mac3a3b and hda15mac3a 24 3.6 The hypocotyl phenotype of 35S:MAC3A-GFP/mac3a and 35S:MAC3B-GFP/mac3a3b 25 3.7 Expression patterns of the genes involved in hypocotyl elongation 26 3.8 Alternative Splicing Analysis 26 3.9 Function of MOS4 in photomophogenesis. 28 Chapter4 Discussion 29 4.1 MAC3A, MAC3B and MOS4 participate in photomorphogenesis 29 4.2 The alternative splicing of light related genes are different in mac3a3b mutant under far red light 30 4.3 MAC3A and MAC3B interact with HDA15 30 Figure 32 SUPPLEMENTARY FIGURES 44 SUPPLEMENTARY TABBLES 50 REFERENCES 54 | |
| dc.language.iso | en | |
| dc.subject | 選擇性剪接 | zh_TW |
| dc.subject | 遠紅光 | zh_TW |
| dc.subject | MAC | zh_TW |
| dc.subject | 下胚軸生長 | zh_TW |
| dc.subject | MAC | en |
| dc.subject | far red light | en |
| dc.subject | alternative splicing | en |
| dc.subject | hypocotyl elongation | en |
| dc.title | MAC3A和MAC3B參與在光影響的葉綠素生合成和植物下胚軸生長 | zh_TW |
| dc.title | MAC3A and MAC3B are involved in light dependent chlorophyll biosynthesis and hypocotyl elongation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝旭亮(Xu-Liang Xie),靳宗洛(Zong-Luo Jin),鄭貽生(Yi-Sheng Zheng),涂世隆(Shi-Long Tu) | |
| dc.subject.keyword | MAC,遠紅光,選擇性剪接,下胚軸生長, | zh_TW |
| dc.subject.keyword | MAC,far red light,alternative splicing,hypocotyl elongation, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU201903066 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
