請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74224完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖 | |
| dc.contributor.author | Cheng-Lin Hong | en |
| dc.contributor.author | 洪晟霖 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:25:07Z | - |
| dc.date.available | 2019-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-12 | |
| dc.identifier.citation | Y. Li, J. Hu, X.-M. Zhang, Z. Song, and M.-H. Yung, Advanced Theory and Simulations 2, 1800182 (2019).
P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, et al., Phys. Rev. X 6, 031007 (2016). C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush, et al., Physical Review X 8, 031022 (2018). M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010). A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush, P. V. Coveney, F. Mintert, F. Wilhelm, and P. J. Love, International Journal of Quantum Chemistry 115, 1431 (2015). J. T. Seeley, M. J. Richard, and P. J. Love, The Journal of chemical physics 137, 224109 (2012). V. c. v. Havl´ıˇcek, M. Troyer, and J. D. Whitfield, Phys. Rev. A 95, 032332 (2017). S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme, arXiv preprint arXiv:1701.08213 (2017). A. Szabo and N. S. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Courier Corporation, 2012). A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, Nature communications 5, 4213 (2014). J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik, Quantum Science and Technology 4, 014008 (2018). J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Molecular Physics 109, 735 (2011). A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Nature 549, 242 (2017). J. Preskill, Quantum 2, 79 (2018). P. K. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G. Salis, A. Fuhrer, M. Ganzhorn, D. J. Egger, M. Troyer, A. Mezzacapo, et al., Phys. Rev. A 98, 022322 (2018). J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, New Journal of Physics 18, 023023 (2016). J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evan-gelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, et al., Wiley Interdisciplinary Reviews: Computational Molecular Science 2, 556 (2012). G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hern´adez, J. Carballo-Franquis, A. Chen, C.-F. Chen, et al., Qiskit: An open-source framework for quantum computing (2019). A. Kandala, K. Temme, A. D. C´orcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, Nature 567, 491 (2019). J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Nature communications 9, 4812 (2018). K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys. Rev. A 98, 032309 (2018). K. Mitarai, T. Yan, and K. Fujii, Phys. Rev. Applied 11, 044087 (2019). R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan, Phys. Rev. X 8, 011044 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74224 | - |
| dc.description.abstract | 在量子化學計算領域中,解決大分子的電子結構問題是個重要的研究課題。量子電腦的出現提供了我們解決古典量子化學難解問題的可能性。在本論文中,我們在不同的擬設下使用稱為變分量子特徵解法的量子—古典混合演算法去模擬一些簡單的分子並比較與討論其結果。最後,我們闡明了可以在不影響能量準確度的情形下減少基於么正耦合簇單激發與雙激發方法擬設的變數數量,進而減少此擬設在量子電腦上的邏輯閘使用量。 | zh_TW |
| dc.description.abstract | Solving electronic structure problems for large molecules is an important research topic in quantum computational chemistry. Quantum computers provide a possibility for solving these quantum chemistry problems that are intractable classically. In this thesis, we use the hybrid-quantum classical algorithm — variational quantum eigensolver (VQE) to simulate the molecular energies of some simple molecules based on two different kinds of ansatzes and discuss their results. In particular, we illustrate the number of parameters of unitary coupled-cluster with single- and double-excitation (UCCSD) ansatz can be educed without the loss of accuracy in energy difference. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:25:07Z (GMT). No. of bitstreams: 1 ntu-108-R06222065-1.pdf: 1632850 bytes, checksum: 119dc98e645fa49ad7b8d67fb8bad589 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II List of Figures V List of Tables VII 1 Introduction 1 2 Quantum Computation on Quantum Chemistry 2 2.1 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Electronic Structure Problem . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Mapping Fermions to Qubits . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.1 Jordan-Wigner Transformation . . . . . . . . . . . . . . . . . 7 2.3.2 Parity Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.3 Bravyi-Kitaev Encoding . . . . . . . . . . . . . . . . . . . . . 8 2.4 Reduction of Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Variational Quantum Eigensolver for Quantum Chemistry 12 3.1 Parameterized state preparation . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 Chemistry-inspired ansatz . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Hardware heuristic ansatz . . . . . . . . . . . . . . . . . . . . 16 3.2 Energy measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Optimization and classical feedback . . . . . . . . . . . . . . . . . . 18 4 Results and Discussions 20 4.1 Ansatz Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.1 UCCSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.2 Heuristic ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Measurement and Optimization . . . . . . . . . . . . . . . . . . . . . 28 4.3 Comparison with Classical and Experimental results . . . . . . . . . . 31 4.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Bibliography 34 | |
| dc.language.iso | en | |
| dc.subject | 電子結構問題 | zh_TW |
| dc.subject | 變分量子特徵解 | zh_TW |
| dc.subject | 量子電腦 | zh_TW |
| dc.subject | 么正耦合簇方法 | zh_TW |
| dc.subject | Electronic structure problem | en |
| dc.subject | VQE | en |
| dc.subject | Quantum Computer | en |
| dc.subject | Unitary Coupled Cluster | en |
| dc.title | 利用變分量子演算法計算分子基態能量之研究 | zh_TW |
| dc.title | Study of Molecular Ground-State Energy Calculations Using Variational Quantum Algorithm | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張慶瑞,蔡政達 | |
| dc.subject.keyword | 電子結構問題,變分量子特徵解,量子電腦,么正耦合簇方法, | zh_TW |
| dc.subject.keyword | Electronic structure problem,VQE,Quantum Computer,Unitary Coupled Cluster, | en |
| dc.relation.page | 36 | |
| dc.identifier.doi | 10.6342/NTU201903192 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
