Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74221
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張培仁(Pei-Zen Chang)
dc.contributor.authorChung-Hsuan Wuen
dc.contributor.author吳仲璿zh_TW
dc.date.accessioned2021-06-17T08:24:59Z-
dc.date.available2024-08-16
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation[1] 財政部統計處,財政統計通報第15號(106)
[2] Bryan, J. (1990). International Status of Thermal Error Research (1990). CIRP Annals, 39(2), pp.645-656.
[3] Bossmanns, B. and Tu, J. (1999). A thermal model for high speed motorized spindles. International Journal of Machine Tools and Manufacture, 39(9), pp.1345-1366.
[4] Li, Y., Zhao, W., Lan, S., Ni, J., Wu, W. and Lu, B. (2015). A review on spindle thermal error compensation in machine tools. International Journal of Machine Tools and Manufacture, 95, pp.20-38.
[5] HARRIS, T. (2019). ESSENTIAL CONCEPTS OF BEARING TECHNOLOGY. [Place of publication not identified]: CRC Press.
[6] Kendoush, A. (1996). An approximate solution of the convective heat transfer from an isothermal rotating cylinder. International Journal of Heat and Fluid Flow, 17(4), pp.439-441.
[7] Ma, C., Yang, J., Zhao, L., Mei, X. and Shi, H. (2015). Simulation and experimental study on the thermally induced deformations of high-speed spindle system. Applied Thermal Engineering, 86, pp.251-268.
[8] Chen, D., Bonis, M., Zhang, F. and Dong, S. (2011). Thermal error of a hydrostatic spindle. Precision Engineering, 35(3), pp.512-520.
[9] Bossmanns, B. and Tu, J. (2001). A Power Flow Model for High Speed Motorized Spindles—Heat Generation Characterization. Journal of Manufacturing Science and Engineering, 123(3), p.494.
[10] Huang, D., Hong, J., Zhang, J., Wu, D. and Li, C. (2012). Thermal resistance network for solving temperature field in spindle system. China Mechanical Engineering, 46, pp.63-66+96.
[11] Liu, Z., Pan, M., Zhang, A., Zhao, Y., Yang, Y. and Ma, C. (2014). Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance. The International Journal of Advanced Manufacturing Technology, 76(9-12), pp.1913-1926.
[12] Yan, J. and Yang, J. (2008). Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. The International Journal of Advanced Manufacturing Technology, 43(11-12), pp.1124-1132.
[13] Lo, C., Yuan, J. and Ni, J. (1999). Optimal temperature variable selection by grouping approach for thermal error modeling and compensation. International Journal of Machine Tools and Manufacture, 39(9), pp.1383-1396.
[14] Yuan, J. and Ni, J. (1998). The real-time error compensation technique for CNC machining systems. Mechatronics, 8(4), pp.359-380.
[15] Han, J., Wang, L., Cheng, N. and Wang, H. (2011). Thermal error modeling of machine tool based on fuzzy c-means cluster analysis and minimal-resource allocating networks. The International Journal of Advanced Manufacturing Technology, 60(5-8), pp.463-472.
[16] Krulewich, D. (1998). Temperature integration model and measurement point selection for thermally induced machine tool errors. Mechatronics, 8(4), pp.395-412.
[17] Li, Y. and Zhao, W. (2012). Axial thermal error compensation method for the spindle of a precision horizontal machining center,. IEEE International Conference on Mechatronics and Automation, pp.2319-2323.
[18] Ruijun, L., Wenhua, Y., Zhang, H. and Qifan, Y. (2012). The thermal error optimization models for CNC machine tools. The International Journal of Advanced Manufacturing Technology, 63(9-12), pp.1167-1176.
[19] Yang, H. and Ni, J. (2003). Dynamic Modeling for Machine Tool Thermal Error Compensation. Journal of Manufacturing Science and Engineering, 125(2), p.245.
[20] Creighton, E., Honegger, A., Tulsian, A. and Mukhopadhyay, D. (2010). Analysis of thermal errors in a high-speed micro-milling spindle. International Journal of Machine Tools and Manufacture, 50(4), pp.386-393.
[21] Li, S., Zhang, Y. and Zhang, G. (1997). A study of pre-compensation for thermal errors of NC machine tools. International Journal of Machine Tools and Manufacture, 37(12), pp.1715-1719.
[22] Pahk, H. and Lee, S. (2002). Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error. The International Journal of Advanced Manufacturing Technology, 20(7), pp.487-494.
[23] Jin, C., Wu, B. and Hu, Y. (2012). Heat generation modeling of ball bearing based on internal load distribution. Tribology International, 45(1), pp.8-15.
[24] Kothandaraman, C. (2012). Fundamentals of heat and mass transfer. New Delhi: New Age International (P) Limited, Publishers.
[25] Bezdek, J., Ehrlich, R. and Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), pp.191-203.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74221-
dc.description.abstract工具機主軸的熱變形是影響加工精度的重要因素之一。工具機主軸在高速加工時,因軸承摩擦導致溫升,而使得主軸產生熱變形,進而影響加工精度。為了提升加工精度,使用熱補償技術是一種有效修正主軸熱變形誤差的方法。本文先利用物理理論和文獻中的經驗公式來簡化工具機主軸的理論模型,續以灰箱系統識別的方法來建立運算量遠低於有限元素法之熱阻網路模型。該熱阻網路模型可利用主軸轉速來預測主軸內部特徵點之溫度。而後採用該熱阻網路模型所預測之溫度和黑箱系統識別方法來建立預測主軸軸向熱變位的模型;該主軸軸向熱變位的模型係以狀態空間的數學結構表示之。最後再採用統計學中的相關係數法來簡化該主軸軸向熱變位的模型,使得原先需要輸入7個特徵點溫度的主軸熱變位模型簡化為僅需輸入3個特徵點溫度,可大幅所短運算量和時間。結合前述預測主軸溫度的熱阻網路模型和預測主軸熱變位的模型,即可利用主軸轉速預測工具機主軸軸向的熱變位,而模型預測曲線與實驗量測數據相比,誤差小於2 μm。zh_TW
dc.description.abstractThe thermal deformation of spindle is one of the important factors that affect the machining accuracy of machine tools. The friction of the bearings of spindle during high-speed machining causes the temperature rising and thermal deformation of spindle and thereby affects the machining accuracy. To improve the machining accuracy, the thermal compensation technology is a useful method to correct the machining error induced by the thermal deformation of spindle. The author firstly establishes a simplified theoretical model of the spindle based on physical principles and the empirical formula proposed by literatures and then adopts the method of grey-box system identification to establish the thermal network model of the spindle. The thermal network model can estimate the temperatures of 7 feature points within the spindle and its amount and time of numerical calculation are much lower than the finite element method. After that, by means of the method of black-box system identification, the temperatures of the 7 feature points estimated by the aforesaid thermal network model are used as the input data to training the thermal deformation model of the spindle. The resulting thermal deformation model is expressed in terms of state space and can estimate the axial deformation of the spindle. Finally, the author further simplifies the thermal deformation model of the spindle by means of the correlation coefficient method in statistics. The simplified thermal deformation model requires only the input temperature data of 3 feature points within the spindle. The simplified thermal deformation model further reduces the amount and time of numerical calculation while remaining the accuracy. The integration of the aforesaid thermal network model and thermal deformation model, one can estimate the thermal deformation of the spindle from its rotational speed. Comparing with the experimental measurement, the error of the estimated thermal deformation is less 2 μm. The proposed method of thermal deformation estimation is applicable to the thermal compensation of machine tool.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:24:59Z (GMT). No. of bitstreams: 1
ntu-108-R06543063-1.pdf: 9651946 bytes, checksum: c426fb19489705f7d3abe5584d740699 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
符號表 ix
Chapter 1 緒論 1
1.1 研究動機與目的 2
1.2 文獻參考 3
1.3 論文架構 8
Chapter 2 物理模型理論及模型建立 9
2.1 熱阻網路模型參數與物理性質 9
2.1.1 主軸熱源 9
2.1.2 主軸系統熱阻 10
2.1.3 主軸系統熱容 12
2.2 熱阻網路模型建立 13
2.2.1 主軸系統熱阻網路 14
2.2.2 狀態空間表示法 17
Chapter 3 熱阻網路系統識別與實驗結果 19
3.1 實驗架設 19
3.1.1 位移量測歸零校正 21
3.2 實驗結果 23
3.2.1 主軸溫升實驗結果 23
3.2.2 主軸軸向變形實驗結果 25
3.3 模型系統識別 25
3.3.1 主軸系統灰箱識別 27
3.3.2 TNM參數識別結果 28
3.3.3 TNM模型驗證 30
3.3.4 TDM模型識別與驗證 33
3.4 TDM黑箱識別 35
3.4.1 TDM黑箱識別結果 36
Chapter 4 模型結果討論與改進 38
4.1 溫度特徵點選取 38
4.1.1 相關係數法(Correlation Coefficient Method, CCM) 38
4.1.2 模糊C群聚法 39
4.2 簡化模型驗證 45
4.2.1 運用相關係數法之簡化模型 45
4.2.2 使用FCM之簡化模型 48
4.3 變轉速下之模型驗證 50
Chapter 5 結論與展望 53
5.1 結論 53
5.2 未來展望 55
參考文獻 56
dc.language.isozh-TW
dc.subject主軸zh_TW
dc.subject工具機zh_TW
dc.subject系統識別zh_TW
dc.subject熱變位補償zh_TW
dc.subjectmachine toolen
dc.subjectspindleen
dc.subjectsystem identificationen
dc.subjectthermal deformation compensationen
dc.title以熱阻網路模型預測工具機主軸的熱變形zh_TW
dc.titleThermal Deformation Prediction of a Machine Tool Spindle by Thermal Network Modelen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor胡毓忠(Yuh-Chung Hu)
dc.contributor.oralexamcommittee李尉彰(Wei-Chang Li),黃榮堂(Jung-Tang Huang)
dc.subject.keyword工具機,主軸,系統識別,熱變位補償,zh_TW
dc.subject.keywordmachine tool,spindle,system identification,thermal deformation compensation,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201903188
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
9.43 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved