Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74219
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯佳吟(Chia-Ying Ko)
dc.contributor.authorYin-Zheng Laien
dc.contributor.author黎穎禎zh_TW
dc.date.accessioned2021-06-17T08:24:53Z-
dc.date.available2024-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citationAlexander, J. M., Diez, J. M., & Levine, J. M. (2015). Novel competitors shape species’ responses to climate change. Nature, 525, 515. doi:10.1038/nature14952
Araújo, M. B., Rozenfeld, A., Rahbek, C., & Marquet, P. A. (2011). Using species co-occurrence networks to assess the impacts of climate change. Ecography, 34(6), 897-908. doi:10.1111/j.1600-0587.2011.06919.x
Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance. Science, 312(5772), 431. doi:10.1126/science.1123412
Bell, G. (2005). The co-distribution of species in relation to the neutral theory of community ecology. Ecology, 86(7), 1757-1770. doi:10.1890/04-1028
Berlow, E. L. (1999). Strong effects of weak interactions in ecological communities. Nature, 398(6725), 330-334. doi:10.1038/18672
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. (2013). Climate Change and the Past, Present, and Future of Biotic Interactions. Science, 341(6145), 499. doi:10.1126/science.1237184
Böhning‐Gaese, K., Caprano, T., Ewijk, Karin v., & Veith, M. (2006). Range Size: Disentangling Current Traits and Phylogenetic and Biogeographic Factors. The American Naturalist, 167(4), 555-567. doi:10.1086/501078
Booth, D., Bond, N., & Macreadie, P. (2011). Detecting range shifts among Australian fishes in response to climate change (Vol. 62).
Cazelles, K., Araújo, M. B., Mouquet, N., & Gravel, D. (2016). A theory for species co-occurrence in interaction networks. Theoretical Ecology, 9(1), 39-48. doi:10.1007/s12080-015-0281-9
Cheng, L., Abraham, J., Hausfather, Z., & Trenberth, K. E. (2019). How fast are the oceans warming? Science, 363(6423), 128. doi:10.1126/science.aav7619
Cheng, L., Zhu, J., Abraham, J., Trenberth, K. E., Fasullo, J. T., Zhang, B., . . . Song, X. (2019). 2018 Continues Record Global Ocean Warming. Advances in Atmospheric Sciences, 36(3), 249-252. doi:10.1007/s00376-019-8276-x
Comte, L., & Olden, J. D. (2017). Climatic vulnerability of the world’s freshwater and marine fishes. Nature Climate Change, 7, 718. doi:10.1038/nclimate3382
Coro, G., Pagano, P., & Ellenbroek, A. (2018). Detecting patterns of climate change in long-term forecasts of marine environmental parameters. International Journal of Digital Earth, 1-19. doi:10.1080/17538947.2018.1543365
Crain, C. M., Kroeker, K., & Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11(12), 1304-1315. doi:10.1111/j.1461-0248.2008.01253.x
Dew, R. M., Silva, D. P., & Rehan, S. M. (2019). Range expansion of an already widespread bee under climate change. Global Ecology and Conservation, 17, e00584. doi:https://doi.org/10.1016/j.gecco.2019.e00584
Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A., . . . Talley, L. D. (2011). Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, 4(1), 11-37. doi:10.1146/annurev-marine-041911-111611
Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmüller, V., Dye, S. R., & Skjoldal, H. R. (2008). Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology, 45(4), 1029-1039. doi:10.1111/j.1365-2664.2008.01488.x
Fei, S., Desprez, J. M., Potter, K. M., Jo, I., Knott, J. A., & Oswalt, C. M. (2017). Divergence of species responses to climate change. Science Advances, 3(5), e1603055. doi:10.1126/sciadv.1603055
Froese, R. and D. Pauly. Editors. (2019). FishBase. World Wide Web electronic publication. www.fishbase.org
Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A., & Navarrete, S. A. (2018). Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology, 99(3), 690-699. doi:10.1002/ecy.2142
García Molinos, J., Halpern, Benjamin S., Schoeman, David S., Brown, Christopher J., Kiessling, W., Moore, Pippa J., . . . Burrows, Michael T. (2015). Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 6, 83. doi:10.1038/nclimate2769
Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., . . . Turley, C. (2015).
Contrasting futures for ocean and society from different anthropogenic CO<sub>2</sub> emissions scenarios. Science, 349(6243), aac4722. doi:10.1126/science.aac4722
Gellner, G., & McCann, K. S. (2016). Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nature Communications, 7, 11180. doi:10.1038/ncomms11180
Goldenberg, S. U., Nagelkerken, I., Marangon, E., Bonnet, A., Ferreira, C. M., & Connell, S. D. (2018). Ecological complexity buffers the impacts of future climate on marine consumers. Nature Climate Change, 8(3), 229-233. doi:10.1038/s41558-018-0086-0
Griffith, G. P., Strutton, P. G., & Semmens, J. M. (2018). Climate change alters stability and species potential interactions in a large marine ecosystem. Global Change Biology, 24(1), e90-e100. doi:10.1111/gcb.13891
Halpern, B. S., Frazier, M., Potapenko, J., Casey, K. S., Koenig, K., Longo, C., . . . Walbridge, S. (2015). Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nature Communications, 6, 7615. doi:10.1038/ncomms8615
Høyer, J. L., & Karagali, I. (2016). Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea. Journal of Climate, 29(7), 2529-2541. doi:10.1175/JCLI-D-15-0663.1
Hiddink, J. G., & Ter Hofstede, R. (2008). Climate induced increases in species richness of marine fishes. Global Change Biology, 14(3), 453-460. doi:10.1111/j.1365-2486.2007.01518.x
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., . . . Hatziolos, M. E. (2007). Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science, 318(5857), 1737. doi:10.1126/science.1152509
Ives, A. R., Klug, J. L., & Gross, K. (2000). Stability and species richness in complex communities. Ecology Letters, 3(5), 399-411. doi:10.1046/j.1461-0248.2000.00144.x
Ji, F., Wu, Z., Huang, J., & Chassignet, E. P. (2014). Evolution of land surface air temperature trend. Nature Climate Change, 4, 462. doi:10.1038/nclimate2223
Kadoya, T., & McCann, K. S. (2015). Weak Interactions and Instability Cascades. Scientific Reports, 5, 12652. doi:10.1038/srep12652
Kleisner, K. M., Fogarty, M. J., McGee, S., Hare, J. A., Moret, S., Perretti, C. T., & Saba, V. S. (2017). Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming. Progress in Oceanography, 153, 24-36. doi:https://doi.org/10.1016/j.pocean.2017.04.001
Kripa, V., Mohamed, K. S., Koya, K. P. S., Jeyabaskaran, R., Prema, D., Padua, S., . . . Vishnu, P. G. (2018). Overfishing and Climate Drives Changes in Biology and Recruitment of the Indian Oil Sardine Sardinella longiceps in Southeastern Arabian Sea. 5(443). doi:10.3389/fmars.2018.00443
Lacerda, A. L. d. F., Rodrigues, L. d. S., van Sebille, E., Rodrigues, F. L., Ribeiro, L., Secchi, E. R., . . . Proietti, M. C. (2019). Plastics in sea surface waters around the Antarctic Peninsula. Scientific Reports, 9(1), 3977. doi:10.1038/s41598-019-40311-4
Lamb, R. W., Smith, F., Aued, A. W., Salinas-de-León, P., Suarez, J., Gomez-Chiarri, M., . . . Witman, J. D. (2018). El Niño drives a widespread ulcerative skin disease outbreak in Galapagos marine fishes. Scientific Reports, 8(1), 16602. doi:10.1038/s41598-018-34929-z
McCann, K. S. (2000). The diversity–stability debate. Nature, 405(6783), 228-233. doi:10.1038/35012234
Mueter, F. J., & Litzow, M. A. (2008). Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecological Applications, 18(2), 309-320. doi:10.1890/07-0564.1
Neeson, T. M., & Mandelik, Y. (2014). Pairwise measures of species co-occurrence for choosing indicator species and quantifying overlap. Ecological Indicators, 45, 721-727. doi:https://doi.org/10.1016/j.ecolind.2014.06.006
O'Reilly, J. E., & Zetlin, C. A. (1998). Seasonal, horizontal, and vertical distribution of phytoplankton chlorophyll a in the northeast U.S. continental shelf ecosystem.
Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The Future of Biodiversity. Science, 269(5222), 347. doi:10.1126/science.269.5222.347
Plagányi, É. (2019). Climate change impacts on fisheries. Science, 363(6430), 930. doi:10.1126/science.aaw5824
Pörtner, H. O., Karl, D., Boyd, P. W., Cheung, W., Lluch-Cota, S. E., Nojiri, Y., . . . Zavialov, P. (2014). Ocean systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (pp. 411-484). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
R. Teal, L. (2011). The North Sea fish community: past, present and future : background document for the 2011 National Nature Outlook.
Ramírez, F., Coll, M., Navarro, J., Bustamante, J., & Green, A. J. (2018). Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Scientific Reports, 8(1), 14871. doi:10.1038/s41598-018-33237-w
Rhein, M., Rintoul, S., Aoki, S., Campos, E., Chambers, D., Feely, R., & Wang, F. (2013). Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Richaud, B., Kwon, Y.-O., Joyce, T. M., Fratantoni, P. S., & Lentz, S. J. (2016). Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts. Continental Shelf Research, 124, 165-181. doi:https://doi.org/10.1016/j.csr.2016.06.005
Riebesell, U., & Gattuso, J.-P. (2015). Lessons learned from ocean acidification research. Nature Clim. Change 5, 12, doi:10.1038/nclimate2456.
Rogers, S. I., & Millner, R. S. (1996). Factors affecting the annual abundance and regional distribution of English inshore demersal fish populations: 1973 to 1995. ICES Journal of Marine Science, 53(6), 1094-1112. doi:10.1006/jmsc.1996.0136
Rutterford, L. A., Simpson, S. D., Jennings, S., Johnson, M. P., Blanchard, J. L., Schön, P.-J., . . . Genner, M. J. (2015). Future fish distributions constrained by depth in warming seas. Nature Climate Change, 5, 569. doi:10.1038/nclimate2607
Sander, E. L., Wootton, J. T., & Allesina, S. (2017). Ecological Network Inference From Long-Term Presence-Absence Data. Scientific Reports, 7(1), 7154. doi:10.1038/s41598-017-07009-x
Shearman, R. K., & Lentz, S. J. (2009). Long-Term Sea Surface Temperature Variability along the U.S. East Coast. Journal of Physical Oceanography, 40(5), 1004-1017. doi:10.1175/2009JPO4300.1
Siddon, E., and Zador, S. (2018). Ecosystem Status Report 2018: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306, Anchorage, AK 99501
Smith, M. D., & Knapp, A. K. (2003). Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6(6), 509-517. doi:10.1046/j.1461-0248.2003.00454.x
Stuart-Smith, R. D., Edgar, G. J., & Bates, A. E. (2017). Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecology & Evolution, 1(12), 1846-1852. doi:10.1038/s41559-017-0353-x
Sündermann, J., & Pohlmann, T. (2011). A brief analysis of North Sea physics. Oceanologia, 53(3), 663-689. doi:https://doi.org/10.5697/oc.53-3.663
Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D., & Herrick, S. (2011). Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change, 1, 449. doi:10.1038/nclimate1301
Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G., & Clark, J. A. (2016). Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat. PLOS ONE, 11(4), e0152636. doi:10.1371/journal.pone.0152636
Walther, G.-R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2019-2024. doi:10.1098/rstb.2010.0021
Welk, A., Welk, E., & Bruelheide, H. (2014). Biotic Interactions Overrule Plant Responses to Climate, Depending on the Species' Biogeography. PLOS ONE, 9(10), e111023. doi:10.1371/journal.pone.0111023
Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., . . . Svenning, J.-C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1), 15-30. doi:10.1111/j.1469-185X.2012.00235.x
Xie, S.-P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., . . . Watanabe, M. (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5, 921. doi:10.1038/nclimate2689
Yamano, H., Sugihara, K., & Nomura, K. (2011). Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophysical Research Letters, 38(4). doi:10.1029/2010GL046474
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74219-
dc.description.abstract不同的海洋物種的地理分布差異很大,其主要會受到物種的特徵,演化及生物地理學相關的因子,如:遷移能力和不同魚種演化相關性所影響。環境改變下,適應能力較弱的物種選擇離開原有的棲地,遷移到更適合的環境居住。物種的遷移,不僅造成個別物種地理分布的改變,同時也將造成魚類群聚組成的變化,進而可能影響海洋生態系統的平衡。但是,對於物種地理分布之間的關聯性如何影響區域性群聚結構和如何進一步造成群聚的不平衡和功能性的改變的了解還非常有限。本篇研究探討從1982至2011年,中緯度美國東北沿岸,高緯度北海以及百令海東部三個不同海洋區域群聚内的成魚之間地理分布的關係,著重了解在不同時間段,地理區域和魚種分群下,物種之間地理分布的變化。研究結果發現,所有物種和根據魚種分群的穩健性(其他物種對其依賴程度,robustness)和敏感性(對其他物種的依賴程度,sensitivity)都會隨著時間增加。另結果發現中緯度美國東北沿岸的魚類群聚結構有相對較多的對稱性結構且物種之間的相關性較強,高緯度的北海和百令海東部則大部分呈現不對稱性結構且物種之間的相關性則較弱;但是在三個10年的時間段卻未發現顯著變化。根據共同出現物種對的不對稱性貢獻,發現中緯度美國東北沿岸的常見物種(common species)在30年間有逐漸偏向對稱分布。總結,海洋魚類在這30年内的地理分布關聯性會隨著時間增加且不同緯度的魚類群聚在地理分布不對稱重疊模式會不同。根據中緯度美國東北沿岸有較多對稱性結構的結果推測此區域的群聚結構比較不穩定,在環境變遷下將會面臨更大的危機。本研究加入海洋魚類地理分布之間的關聯性,探討並了解環境變遷下魚類群聚的變化,對未來海洋魚類群聚受到環境變遷影響的評估和漁業管理提供了新的觀點。zh_TW
dc.description.abstractThe geographical distributions of individual marine species vary substantially in extent, and this variation can be determined by its current traits and by phylogenetic and biogeographic factors such as dispersal ability and phylogenetic relatedness of different marine fish species. Species with low adaptive ability will no longer stay in their current habitat and migrate to a new geographical location with more suitable environment under environmental change. The migration of species not only cause changes in their geographical distribution but also changes in the composition of the fish community, which may further affect the balancing of the whole marine ecosystem. However, there is still relatively limited knowledge of how the correlation between the geographical distribution of species affects regional community structures and how they further cause community imbalances and functional changes. Here, I investigated geographical interactions of marine adult fish species in the mid-latitude Northeast US coast, the high-latitude North Sea and the Eastern Bering Sea from 1982 to 2011 and focused on exploring the geographical distribution changes between species in different time periods, geographical regions and fish species groups. The results of overall species and different fish species groups indicated that robustness and sensitivity of the three time periods increased. More symmetrical structure and stronger species interactions were found in the mid-latitude Northeast US coast than the high-latitude North Sea and the Eastern Bering Sea marine fish communities, but there were no significant differences over three decades in each community. According to the contribution of cooccurring species pairs to asymmetry, asymmetry structures of common species pairs in mid-latitude Northeast US coast were tended to be symmetrical over three decades. We concluded that results of long-term geographical interaction within 30 years and both robustness and sensitivity in species groups had increased with time and their geographical overlapping asymmetry may vary in the aspect of latitudes. The finding of highly symmetrical community structure in the Northeast US coast suggests that the mid-latitude marine fish community may be more unstable and particularly face a high risk under environmental changes. Taking the geographical interactions of marine fish species into account will provide a new perspective on exploring the changes in marine fish communities under environmental change and crucial for the development of climate change impact assessment and also fisheries management in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:24:53Z (GMT). No. of bitstreams: 1
ntu-108-R06B45017-1.pdf: 3368989 bytes, checksum: 859c06fa68923541e8831e3cf43d012f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents vi
Introduction 1
Materials and Methods 6
Study regions description 6
Species data 7
Fish species groups 7
Measures of geographical interactions between species 8
Statistical analysis 12
Results and Discussion 13
Robustness and sensitivity 13
Robustness and sensitivity in fish species groups 15
Asymmetry and association 16
Contribution of cooccurring species pairs to asymmetry based on different groups 17
Caveats and future perspectives 19
Conclusion 20
Figure references 22
References 31
Appendix 39
dc.language.isoen
dc.subject長期變化zh_TW
dc.subject群聚結構zh_TW
dc.subject海洋魚類zh_TW
dc.subject物種地理分布zh_TW
dc.subjectSpecies geographical distributionen
dc.subjectMarine fish speciesen
dc.subjectCommunity structureen
dc.subjectLong-term changesen
dc.title海洋魚類地理分布關聯性之長期變化zh_TW
dc.titleLong-term changes in geographical interaction of marine fish speciesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee端木茂甯(Mao-Ning Tuanmu),謝志豪(Chih-hao Hsieh),陳一菁(I-Ching Chen),邵廣昭(Kwang-Tsao Shao)
dc.subject.keyword海洋魚類,物種地理分布,群聚結構,長期變化,zh_TW
dc.subject.keywordMarine fish species,Species geographical distribution,Community structure,Long-term changes,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201902555
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved