請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74219完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯佳吟(Chia-Ying Ko) | |
| dc.contributor.author | Yin-Zheng Lai | en |
| dc.contributor.author | 黎穎禎 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:24:53Z | - |
| dc.date.available | 2024-08-27 | |
| dc.date.copyright | 2019-08-27 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | Alexander, J. M., Diez, J. M., & Levine, J. M. (2015). Novel competitors shape species’ responses to climate change. Nature, 525, 515. doi:10.1038/nature14952
Araújo, M. B., Rozenfeld, A., Rahbek, C., & Marquet, P. A. (2011). Using species co-occurrence networks to assess the impacts of climate change. Ecography, 34(6), 897-908. doi:10.1111/j.1600-0587.2011.06919.x Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance. Science, 312(5772), 431. doi:10.1126/science.1123412 Bell, G. (2005). The co-distribution of species in relation to the neutral theory of community ecology. Ecology, 86(7), 1757-1770. doi:10.1890/04-1028 Berlow, E. L. (1999). Strong effects of weak interactions in ecological communities. Nature, 398(6725), 330-334. doi:10.1038/18672 Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. (2013). Climate Change and the Past, Present, and Future of Biotic Interactions. Science, 341(6145), 499. doi:10.1126/science.1237184 Böhning‐Gaese, K., Caprano, T., Ewijk, Karin v., & Veith, M. (2006). Range Size: Disentangling Current Traits and Phylogenetic and Biogeographic Factors. The American Naturalist, 167(4), 555-567. doi:10.1086/501078 Booth, D., Bond, N., & Macreadie, P. (2011). Detecting range shifts among Australian fishes in response to climate change (Vol. 62). Cazelles, K., Araújo, M. B., Mouquet, N., & Gravel, D. (2016). A theory for species co-occurrence in interaction networks. Theoretical Ecology, 9(1), 39-48. doi:10.1007/s12080-015-0281-9 Cheng, L., Abraham, J., Hausfather, Z., & Trenberth, K. E. (2019). How fast are the oceans warming? Science, 363(6423), 128. doi:10.1126/science.aav7619 Cheng, L., Zhu, J., Abraham, J., Trenberth, K. E., Fasullo, J. T., Zhang, B., . . . Song, X. (2019). 2018 Continues Record Global Ocean Warming. Advances in Atmospheric Sciences, 36(3), 249-252. doi:10.1007/s00376-019-8276-x Comte, L., & Olden, J. D. (2017). Climatic vulnerability of the world’s freshwater and marine fishes. Nature Climate Change, 7, 718. doi:10.1038/nclimate3382 Coro, G., Pagano, P., & Ellenbroek, A. (2018). Detecting patterns of climate change in long-term forecasts of marine environmental parameters. International Journal of Digital Earth, 1-19. doi:10.1080/17538947.2018.1543365 Crain, C. M., Kroeker, K., & Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11(12), 1304-1315. doi:10.1111/j.1461-0248.2008.01253.x Dew, R. M., Silva, D. P., & Rehan, S. M. (2019). Range expansion of an already widespread bee under climate change. Global Ecology and Conservation, 17, e00584. doi:https://doi.org/10.1016/j.gecco.2019.e00584 Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A., . . . Talley, L. D. (2011). Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, 4(1), 11-37. doi:10.1146/annurev-marine-041911-111611 Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmüller, V., Dye, S. R., & Skjoldal, H. R. (2008). Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology, 45(4), 1029-1039. doi:10.1111/j.1365-2664.2008.01488.x Fei, S., Desprez, J. M., Potter, K. M., Jo, I., Knott, J. A., & Oswalt, C. M. (2017). Divergence of species responses to climate change. Science Advances, 3(5), e1603055. doi:10.1126/sciadv.1603055 Froese, R. and D. Pauly. Editors. (2019). FishBase. World Wide Web electronic publication. www.fishbase.org Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A., & Navarrete, S. A. (2018). Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology, 99(3), 690-699. doi:10.1002/ecy.2142 García Molinos, J., Halpern, Benjamin S., Schoeman, David S., Brown, Christopher J., Kiessling, W., Moore, Pippa J., . . . Burrows, Michael T. (2015). Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 6, 83. doi:10.1038/nclimate2769 Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., . . . Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO<sub>2</sub> emissions scenarios. Science, 349(6243), aac4722. doi:10.1126/science.aac4722 Gellner, G., & McCann, K. S. (2016). Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nature Communications, 7, 11180. doi:10.1038/ncomms11180 Goldenberg, S. U., Nagelkerken, I., Marangon, E., Bonnet, A., Ferreira, C. M., & Connell, S. D. (2018). Ecological complexity buffers the impacts of future climate on marine consumers. Nature Climate Change, 8(3), 229-233. doi:10.1038/s41558-018-0086-0 Griffith, G. P., Strutton, P. G., & Semmens, J. M. (2018). Climate change alters stability and species potential interactions in a large marine ecosystem. Global Change Biology, 24(1), e90-e100. doi:10.1111/gcb.13891 Halpern, B. S., Frazier, M., Potapenko, J., Casey, K. S., Koenig, K., Longo, C., . . . Walbridge, S. (2015). Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nature Communications, 6, 7615. doi:10.1038/ncomms8615 Høyer, J. L., & Karagali, I. (2016). Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea. Journal of Climate, 29(7), 2529-2541. doi:10.1175/JCLI-D-15-0663.1 Hiddink, J. G., & Ter Hofstede, R. (2008). Climate induced increases in species richness of marine fishes. Global Change Biology, 14(3), 453-460. doi:10.1111/j.1365-2486.2007.01518.x Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., . . . Hatziolos, M. E. (2007). Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science, 318(5857), 1737. doi:10.1126/science.1152509 Ives, A. R., Klug, J. L., & Gross, K. (2000). Stability and species richness in complex communities. Ecology Letters, 3(5), 399-411. doi:10.1046/j.1461-0248.2000.00144.x Ji, F., Wu, Z., Huang, J., & Chassignet, E. P. (2014). Evolution of land surface air temperature trend. Nature Climate Change, 4, 462. doi:10.1038/nclimate2223 Kadoya, T., & McCann, K. S. (2015). Weak Interactions and Instability Cascades. Scientific Reports, 5, 12652. doi:10.1038/srep12652 Kleisner, K. M., Fogarty, M. J., McGee, S., Hare, J. A., Moret, S., Perretti, C. T., & Saba, V. S. (2017). Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming. Progress in Oceanography, 153, 24-36. doi:https://doi.org/10.1016/j.pocean.2017.04.001 Kripa, V., Mohamed, K. S., Koya, K. P. S., Jeyabaskaran, R., Prema, D., Padua, S., . . . Vishnu, P. G. (2018). Overfishing and Climate Drives Changes in Biology and Recruitment of the Indian Oil Sardine Sardinella longiceps in Southeastern Arabian Sea. 5(443). doi:10.3389/fmars.2018.00443 Lacerda, A. L. d. F., Rodrigues, L. d. S., van Sebille, E., Rodrigues, F. L., Ribeiro, L., Secchi, E. R., . . . Proietti, M. C. (2019). Plastics in sea surface waters around the Antarctic Peninsula. Scientific Reports, 9(1), 3977. doi:10.1038/s41598-019-40311-4 Lamb, R. W., Smith, F., Aued, A. W., Salinas-de-León, P., Suarez, J., Gomez-Chiarri, M., . . . Witman, J. D. (2018). El Niño drives a widespread ulcerative skin disease outbreak in Galapagos marine fishes. Scientific Reports, 8(1), 16602. doi:10.1038/s41598-018-34929-z McCann, K. S. (2000). The diversity–stability debate. Nature, 405(6783), 228-233. doi:10.1038/35012234 Mueter, F. J., & Litzow, M. A. (2008). Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecological Applications, 18(2), 309-320. doi:10.1890/07-0564.1 Neeson, T. M., & Mandelik, Y. (2014). Pairwise measures of species co-occurrence for choosing indicator species and quantifying overlap. Ecological Indicators, 45, 721-727. doi:https://doi.org/10.1016/j.ecolind.2014.06.006 O'Reilly, J. E., & Zetlin, C. A. (1998). Seasonal, horizontal, and vertical distribution of phytoplankton chlorophyll a in the northeast U.S. continental shelf ecosystem. Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The Future of Biodiversity. Science, 269(5222), 347. doi:10.1126/science.269.5222.347 Plagányi, É. (2019). Climate change impacts on fisheries. Science, 363(6430), 930. doi:10.1126/science.aaw5824 Pörtner, H. O., Karl, D., Boyd, P. W., Cheung, W., Lluch-Cota, S. E., Nojiri, Y., . . . Zavialov, P. (2014). Ocean systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (pp. 411-484). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. R. Teal, L. (2011). The North Sea fish community: past, present and future : background document for the 2011 National Nature Outlook. Ramírez, F., Coll, M., Navarro, J., Bustamante, J., & Green, A. J. (2018). Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Scientific Reports, 8(1), 14871. doi:10.1038/s41598-018-33237-w Rhein, M., Rintoul, S., Aoki, S., Campos, E., Chambers, D., Feely, R., & Wang, F. (2013). Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Richaud, B., Kwon, Y.-O., Joyce, T. M., Fratantoni, P. S., & Lentz, S. J. (2016). Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts. Continental Shelf Research, 124, 165-181. doi:https://doi.org/10.1016/j.csr.2016.06.005 Riebesell, U., & Gattuso, J.-P. (2015). Lessons learned from ocean acidification research. Nature Clim. Change 5, 12, doi:10.1038/nclimate2456. Rogers, S. I., & Millner, R. S. (1996). Factors affecting the annual abundance and regional distribution of English inshore demersal fish populations: 1973 to 1995. ICES Journal of Marine Science, 53(6), 1094-1112. doi:10.1006/jmsc.1996.0136 Rutterford, L. A., Simpson, S. D., Jennings, S., Johnson, M. P., Blanchard, J. L., Schön, P.-J., . . . Genner, M. J. (2015). Future fish distributions constrained by depth in warming seas. Nature Climate Change, 5, 569. doi:10.1038/nclimate2607 Sander, E. L., Wootton, J. T., & Allesina, S. (2017). Ecological Network Inference From Long-Term Presence-Absence Data. Scientific Reports, 7(1), 7154. doi:10.1038/s41598-017-07009-x Shearman, R. K., & Lentz, S. J. (2009). Long-Term Sea Surface Temperature Variability along the U.S. East Coast. Journal of Physical Oceanography, 40(5), 1004-1017. doi:10.1175/2009JPO4300.1 Siddon, E., and Zador, S. (2018). Ecosystem Status Report 2018: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306, Anchorage, AK 99501 Smith, M. D., & Knapp, A. K. (2003). Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6(6), 509-517. doi:10.1046/j.1461-0248.2003.00454.x Stuart-Smith, R. D., Edgar, G. J., & Bates, A. E. (2017). Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecology & Evolution, 1(12), 1846-1852. doi:10.1038/s41559-017-0353-x Sündermann, J., & Pohlmann, T. (2011). A brief analysis of North Sea physics. Oceanologia, 53(3), 663-689. doi:https://doi.org/10.5697/oc.53-3.663 Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D., & Herrick, S. (2011). Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change, 1, 449. doi:10.1038/nclimate1301 Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G., & Clark, J. A. (2016). Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat. PLOS ONE, 11(4), e0152636. doi:10.1371/journal.pone.0152636 Walther, G.-R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2019-2024. doi:10.1098/rstb.2010.0021 Welk, A., Welk, E., & Bruelheide, H. (2014). Biotic Interactions Overrule Plant Responses to Climate, Depending on the Species' Biogeography. PLOS ONE, 9(10), e111023. doi:10.1371/journal.pone.0111023 Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., . . . Svenning, J.-C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1), 15-30. doi:10.1111/j.1469-185X.2012.00235.x Xie, S.-P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., . . . Watanabe, M. (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5, 921. doi:10.1038/nclimate2689 Yamano, H., Sugihara, K., & Nomura, K. (2011). Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophysical Research Letters, 38(4). doi:10.1029/2010GL046474 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74219 | - |
| dc.description.abstract | 不同的海洋物種的地理分布差異很大,其主要會受到物種的特徵,演化及生物地理學相關的因子,如:遷移能力和不同魚種演化相關性所影響。環境改變下,適應能力較弱的物種選擇離開原有的棲地,遷移到更適合的環境居住。物種的遷移,不僅造成個別物種地理分布的改變,同時也將造成魚類群聚組成的變化,進而可能影響海洋生態系統的平衡。但是,對於物種地理分布之間的關聯性如何影響區域性群聚結構和如何進一步造成群聚的不平衡和功能性的改變的了解還非常有限。本篇研究探討從1982至2011年,中緯度美國東北沿岸,高緯度北海以及百令海東部三個不同海洋區域群聚内的成魚之間地理分布的關係,著重了解在不同時間段,地理區域和魚種分群下,物種之間地理分布的變化。研究結果發現,所有物種和根據魚種分群的穩健性(其他物種對其依賴程度,robustness)和敏感性(對其他物種的依賴程度,sensitivity)都會隨著時間增加。另結果發現中緯度美國東北沿岸的魚類群聚結構有相對較多的對稱性結構且物種之間的相關性較強,高緯度的北海和百令海東部則大部分呈現不對稱性結構且物種之間的相關性則較弱;但是在三個10年的時間段卻未發現顯著變化。根據共同出現物種對的不對稱性貢獻,發現中緯度美國東北沿岸的常見物種(common species)在30年間有逐漸偏向對稱分布。總結,海洋魚類在這30年内的地理分布關聯性會隨著時間增加且不同緯度的魚類群聚在地理分布不對稱重疊模式會不同。根據中緯度美國東北沿岸有較多對稱性結構的結果推測此區域的群聚結構比較不穩定,在環境變遷下將會面臨更大的危機。本研究加入海洋魚類地理分布之間的關聯性,探討並了解環境變遷下魚類群聚的變化,對未來海洋魚類群聚受到環境變遷影響的評估和漁業管理提供了新的觀點。 | zh_TW |
| dc.description.abstract | The geographical distributions of individual marine species vary substantially in extent, and this variation can be determined by its current traits and by phylogenetic and biogeographic factors such as dispersal ability and phylogenetic relatedness of different marine fish species. Species with low adaptive ability will no longer stay in their current habitat and migrate to a new geographical location with more suitable environment under environmental change. The migration of species not only cause changes in their geographical distribution but also changes in the composition of the fish community, which may further affect the balancing of the whole marine ecosystem. However, there is still relatively limited knowledge of how the correlation between the geographical distribution of species affects regional community structures and how they further cause community imbalances and functional changes. Here, I investigated geographical interactions of marine adult fish species in the mid-latitude Northeast US coast, the high-latitude North Sea and the Eastern Bering Sea from 1982 to 2011 and focused on exploring the geographical distribution changes between species in different time periods, geographical regions and fish species groups. The results of overall species and different fish species groups indicated that robustness and sensitivity of the three time periods increased. More symmetrical structure and stronger species interactions were found in the mid-latitude Northeast US coast than the high-latitude North Sea and the Eastern Bering Sea marine fish communities, but there were no significant differences over three decades in each community. According to the contribution of cooccurring species pairs to asymmetry, asymmetry structures of common species pairs in mid-latitude Northeast US coast were tended to be symmetrical over three decades. We concluded that results of long-term geographical interaction within 30 years and both robustness and sensitivity in species groups had increased with time and their geographical overlapping asymmetry may vary in the aspect of latitudes. The finding of highly symmetrical community structure in the Northeast US coast suggests that the mid-latitude marine fish community may be more unstable and particularly face a high risk under environmental changes. Taking the geographical interactions of marine fish species into account will provide a new perspective on exploring the changes in marine fish communities under environmental change and crucial for the development of climate change impact assessment and also fisheries management in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:24:53Z (GMT). No. of bitstreams: 1 ntu-108-R06B45017-1.pdf: 3368989 bytes, checksum: 859c06fa68923541e8831e3cf43d012f (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents vi Introduction 1 Materials and Methods 6 Study regions description 6 Species data 7 Fish species groups 7 Measures of geographical interactions between species 8 Statistical analysis 12 Results and Discussion 13 Robustness and sensitivity 13 Robustness and sensitivity in fish species groups 15 Asymmetry and association 16 Contribution of cooccurring species pairs to asymmetry based on different groups 17 Caveats and future perspectives 19 Conclusion 20 Figure references 22 References 31 Appendix 39 | |
| dc.language.iso | en | |
| dc.subject | 長期變化 | zh_TW |
| dc.subject | 群聚結構 | zh_TW |
| dc.subject | 海洋魚類 | zh_TW |
| dc.subject | 物種地理分布 | zh_TW |
| dc.subject | Species geographical distribution | en |
| dc.subject | Marine fish species | en |
| dc.subject | Community structure | en |
| dc.subject | Long-term changes | en |
| dc.title | 海洋魚類地理分布關聯性之長期變化 | zh_TW |
| dc.title | Long-term changes in geographical interaction of marine fish species | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 端木茂甯(Mao-Ning Tuanmu),謝志豪(Chih-hao Hsieh),陳一菁(I-Ching Chen),邵廣昭(Kwang-Tsao Shao) | |
| dc.subject.keyword | 海洋魚類,物種地理分布,群聚結構,長期變化, | zh_TW |
| dc.subject.keyword | Marine fish species,Species geographical distribution,Community structure,Long-term changes, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU201902555 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
