Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢(Tsung-Hsien Lin)
dc.contributor.authorYang-Sheng Chengen
dc.contributor.author鄭揚聲zh_TW
dc.date.accessioned2021-06-17T08:23:33Z-
dc.date.available2020-08-18
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation[1]R. Muller et al., “A Minimally Invasive 64-Channel Wireless μECoG Implant, ” IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 344-359, Jan. 2015.
[2]J. Xu et al., “A Wearable 8-Channel Active-Electrode EEG/ETI Acquisition System for Body Area Networks, ” IEEE Journal of Solid-State Circuits, vol. 49, no. 9, pp. 2005-2016, Sept. 2014.
[3]C. C. Tu, Y. K. Wang, and T. H. Lin, “A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS, ” IEEE Journal of Solid-State Circuits, vol. 52, no. 10, pp. 2523-2532, Oct. 2017.
[4]C. C. Tu, Y. K. Wang, and T. H. Lin, “A 0.06 mm2 ±50 mV Range -82dB THD Chopper VCO-Based Sensor Readout Circuit in 40nm CMOS, ” in Symposium on VLSI Circuits, pp. C84-C85, 2017.
[5]R. Wu, K. A. A. Makinwa, and J.H. Huijsing, “A Chopper Current-Feedback Instrumentation Amplifier with a 1 mHz 1/f Noise Corner and an AC-Coupled Ripple Reduction Loop, ” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3232-3243, Dec. 2009.
[6]R. F. Yazicioglu, C. Van Hoof, and R. Puers, “Biopotential Readout Circuits for Portable Acquisition Systems, ” Springer, 2009.
[7]B. Razavi, “Design of Analog CMOS Integrated Circuits, ” McHraw Hill, 2001.
[8]C. C. Enz, and G. C. Temes, “Circuit Techniques for Reducing the Effects of Op-amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization, ” in Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[9]Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8µW 1µV-Offset Capacitively-Coupled Chopper Instrumentation Amplifier in 65nm CMOS for Wireless Sensor Nodes, ” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1534-1543, Jul. 2011.
[10]P. R. Burkhard et al., “Suicide After Successful Deep Brain Stimulation for Movement Disorders, ” in Neurology, vol. 63, no. 11, pp. 2170-2172, Jul. 2004.
[11]C. C. Tu, “Design of Low-Power Low-Noise Analog Front-end Circuits for Biomedical Applications, ” Master Thesis, National Taiwan University (NTU), 2012.
[12]T. Denison, K. Consoer, and W. Santa, “A 2 W 100 nV Hz Chopper Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials, ” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
[13]A. T. K. Tang, “A 3µV-Offset Operational Amplifier with 20nV/√Hz Input Noise PSD at DC Employing both Chopping and Autozeroing, ” in IEEE International Solid-State Circuits Conference, vol. 1, pp. 386-387, 2002.
[14]R. Wu, J. H. Huijsing, and K. A. A. Makinwa, “Precision Instrumentation Amplifiers and Read-out Integrated Circuits, ” Springer, 2012.
[15]J. F. Witte, K. A. A. Makinwa, and J. H. Huijsing, “Dynamic Offset Compensated CMOS Amplifiers, ” Springer, 2009.
[16]L. Lah, J. Choma, and J. Draper, “A Continuous-Time Common-Mode Feedback Circuit (CMFB) for High-impedance Current Mode Application, ” in IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No. 98EX196), vol. 3, pp. 347-350, 1998.
[17]Q. Fan, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8µW 60nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65nm CMOS for Wireless Sensor Nodes, ” IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 464-475, 2011.
[18]R. F. Yazicioglu, P. Merken, and R. Puers et al., “A 200 W Eight-channel Acquisition ASIC for Ambulatory EEG Systems, ” in IEEE International Solid-State Circuits Conference, Dig. Tech. Papers, pp. 164-165, 2008.
[19]R. R. Harrison, and C. Charles, “A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications, ” IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 958-965, Jun. 2003.
[20]V. Majidzadeh, A. Schmid, and Y. Leblebici, “Energy Efficient Low-noise Neural Recording Amplifier with Enhanced Noise Efficiency Factor, ” in IEEE Transactions on biomedical circuits and systems, vol. 5, no. 3, pp. 262-271, 2011.
[21]B. Gosselin, S. Mohamad, and C. A. Chapman, “A Low-power Integrated Bioamplifier with Active Low-frequency Suppression, ” in IEEE transactions on biomedical circuits and systems, vol. 1, no. 3, pp. 184-192, 2007.
[22]R. F. Yazicioglu, P. Merken, R. Puers, and C. V. Hoof, “A 60μW 60nV/√Hz Readout Front-End for Portable Biopotential Acquisition Systems, ” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1100-1110, May. 2007.
[23]J. Wu et al., “A 2µW 45nV/√Hz Readout Front End with Multiple-Chopping Active-High-Pass Ripple Reduction Loop and Pseudofeedback DC Servo Loop, ” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 4, pp. 351-355, May. 2015.
[24]T. Denison, K. Consoer, W. Santa, A. T. Avestruz, J. Cooley, and A. Kelly, “A 2μW 100nV/√Hz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials, “ IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
[25]K. Nagaraj, ”A Parasitic-Insensitive Area-Efficient Approach to Realizing Very Large Time Constants in Switched- Capacitor Circuits, ” in IEEE Transactions on Circuits and Systems, vol.36, no.9, pp. 1210-1216, Sep. 1989.
[26]Q. Fan, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8µW 60nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65nm CMOS for Wireless Sensor Nodes, ” IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 464-475, 2011.
[27]J. A. Kaehler, “Periodic-Switching Filter Networks-A Means of Amplifying and Varying Transfer Functions, ” IEEE Journal of Solid-State Circuits vol. 4, no. 4, pp. 225-230, Aug. 1969.
[28]W. Jiang, V. Hokhikyan, H. Chandrakumar, V. Karkare, and D. Markovic, “A ±50mV Linear-Input-Range VCO-based Neural-Recording Front-End with Digital Nonlinearity Correction, ” in IEEE International Solid-State Circuits Conference, San Francisco, CA, pp. 484-485, 2016.
[29]E. Rodriguez-Villegas, A. J. Casson, and P. Corbishley, “A Subhertz Nanopower Low-Pass Filter, ” in IEEE Transactions on Circuits and Systems II, vol. 58, no. 6, pp. 351-355, Jun. 2011.
[30]H. Chandrakumar, and D. Marković, “A High Dynamic-range Neural Recording Chopper Amplifier for Simultaneous Neural Recording and Stimulation, ” IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 645-656, 2017.
[31]H. Chandrakumar, and D. Marković, “An 80-mVpp Linear-Input Range, 1.6-GΩ Input Impedance, Low-Power Chopper Amplifier for Closed-Loop Neural Recording That Is Tolerant to 650-mVpp Common-Mode Interference, ” IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2811-2828, 2017.
[32]R. Muller, S. Gambini, and J. M. Rabaey, “A 0.013 mm2, 5μW, DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply, ” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 232-243, 2011.
[33]R. Muller et al., “24.1 A Miniaturized 64-channel 225μW Wireless Electrocorticographic Neural Sensor, ” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, pp. 412-413, 2014.
[34]J. Xu, R. Yazicioglu, B. Grundlehner, P. Harpe, K. A. A. Makinwa, and C. Van Hoof, “A 160μW 8-Channel Active Electrode System for EEG Monitoring, ” in IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 6, pp. 555-567, Dec. 2011.
[35]J. Yoo, L. Yan, D. El-Damak, M. A. B. Altaf, A. H. Shoeb, and A. P. Chandrakasan, “An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific Seizure Classification and Recording Processor, ” IEEE Journal of Solid-State Circuits, vol.48, no.1, pp. 214-228, Jan. 2013.
[36]R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof,“A 60μW 60nV/√Hz Readout Front-End for Portable Biopotential Acquisition Systems, ”IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1100-1110, May. 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74188-
dc.description.abstract本論文實作並量測一個晶片,此晶片適用於腦波偵測的低雜訊與低功耗類比前端電路。此前端電路的架構使用電流回授儀表放大器,並利用動態偏移補償技術,以截波之方式達到去除閃爍雜訊的效果。此電路亦包含一個漣波抑制電路,能將截波技術產生的漣波消除。本電路使用了兩種不同的方式來抑制因電極不匹配而造成的偏移電壓。第一種方式是利用交換電容積分器,以負回授補償的方式來消除偏移電壓,量測結果顯示電路具有高通濾波的效果。然而因為交換電容電路的雜訊折疊效應,影響了低頻訊號的品質。第二種方式是使用極短的工作週期,將電阻的低阻值提升至高阻抗。藉由此一特性,實現高通濾波的效果,並在低頻率也有良好的表現。這顆晶片實作於台積電180奈米製程,晶片核心面積為0.56平方毫米。此電路在1.8伏特下消耗28.7微安培的電流,在局部場電位頻帶(1到200赫茲)中,積分雜訊為1.275微伏特,在動作電位(200到5千赫茲)頻帶中,積分雜訊則為3.675微伏特。雜訊效率比分別為18.65和10.95。zh_TW
dc.description.abstractThis thesis introduces the design of analog front-end circuits for biomedical application. The front-end is based on a chopper CFIA, with a ripple reduction loop and a DC servo loop. Chopping technique is employed to suppress the flicker noise and offset. The output ripple introduced by chopping is suppressed by ripple reduction loop. In bio-medical applications, the high-pass corner frequency should be set under 1 Hz, which requires a large time constant integrator. We implement two kinds of integrators, both structures are area-efficient, and avoid using pseudo-resistors and off-chip capacitors. The switched-capacitor integrator achieves a high-pass corner of 0.2 Hz. However, the aliasing issue in switched-capacitor can cause severely aliased noise in low frequency, which degrades the noise performance. On the other hand, integrator using duty-cycled resistor has the better noise performance in low frequency. The chip is implemented with TSMC 180-nm process and the core area is 0.56 mm2. With current consumption of 27.83 uA, the input-referred noise in the LFP signal band (1 Hz-200 Hz) and AP signal band (200 Hz-5 kHz) are 1.275 uVrms and 3.675 uVrms, respectively. The NEF can be calculated as 18.65 and 10.95, respectively.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:23:33Z (GMT). No. of bitstreams: 1
ntu-108-R05943104-1.pdf: 8294535 bytes, checksum: bf9169bba8e0654c2722d63f41aae9e1 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文審定書 iii
英文審定書 v
摘要 ix
Abstract xi
List of Figures xvi
List of Tables xxi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Dissertation Overview 2
Chapter 2 Fundamental of Sensor Interface Circuits 3
2.1 Basic Sensor Read-Out Systems 3
2.2 Non-Idealities in Sensor Read-Out Systems 7
2.2.1 Offset Voltage 7
2.2.2 Noise 9
2.2.3 Common-Mode Variation 11
2.3 Dynamic Offset Compensation Technique 12
2.3.1 Auto-zeroing 12
2.3.2 Chopping 14
Chapter 3 Design of a Chopper CFIA with a Ripple Reduction Loop for EEG Application 17
3.1 Introduction 17
3.2 System Architecture 19
3.2.1 Behavior Model of CFIA 20
3.2.2 Behavior Model of Chopper CFIA 22
3.2.3 Behavior Model of Ripple Reduction Loop (RRL) 26
3.3 Transistor Level Design and Simulation Result 33
3.3.1 Input Stage of CFIA 34
3.3.2 Output Stage of CFIA 38
3.3.3 Cascode Buffers 41
3.4 System Level Simulation Results 44
3.5 Measurement Results 51
3.5.1 Chip Configuration and Die Photo 51
3.5.2 Measurement Environment Setup 52
3.5.3 Offset of CFIA 54
3.5.4 Frequency Response of CFIA 55
3.5.5 Noise Response 56
3.5.6 CMRR 57
3.5.7 RRL Measured Results 58
3.5.8 Total Harmonic Distortion 59
3.5.9 Input Impedance 61
3.6 Discussion and Summary 62
Chapter 4 Design of a Chopper CFIA with a DC Servo Loop for EEG Application Using Switched-Capacitor Integrator 65
4.1 Introduction 65
4.2 System Architecture 67
4.2.1 Behavior Model of DC Servo Loop (DSL) 67
4.2.2 Noise and Offset Analysis in DSL 70
4.2.3 Behavior Model of Switched-Capacitor Integrator 71
4.3 Transistor Level Design and Simulation Result 75
4.3.1 Feedback Resistor and Input Stage of CFIA 75
4.3.2 Switched-Capacitor Integrator 76
4.4 System Simulation Results 80
4.5 Measurement Results 82
4.5.1 Frequency Response 82
4.5.2 Noise Response 83
4.5.3 Total Harmonic Distortion 86
4.6 Discussion and Summary 87
Chapter 5 Design of a Chopper CFIA with a DC Servo Loop for EEG Application Using Duty-Cycled Resistor 89
5.1 Introduction 89
5.2 System Architecture 90
5.2.1 Behavior Model of Duty-Cycled Resistor 90
5.2.2 Noise Analysis of Duty-Cycled Resistor Integrator 92
5.3 Transistor Level Design and Simulation Result 94
5.3.1 Duty-cycled Resistor Integrator 95
5.3.1 System Simulation Results 102
5.4 Measurement Result 104
5.4.1 Frequency Response 104
5.4.2 Noise Response 106
5.4.3 Total Harmonic Distortion 108
5.5 Discussion and Summary 110
5.6 Comparison with State-Of-The-Art 112
Chapter 6 Conclusions and Future Works 114
6.1 Conclusions 114
6.2 Future Works 115
References 117
dc.language.isoen
dc.title適用於生醫應用之生物訊號擷取類比前端電路設計zh_TW
dc.titleDesign of Bio-signal Acquisition Front-End Circuits for Biomedical Applicationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor呂學士(Shey-Shi Lu)
dc.contributor.oralexamcommittee黃柏鈞,彭盛裕,李泰成
dc.subject.keyword低功率,低雜訊,感測器,類比前端電路,儀表放大器,生醫應用,zh_TW
dc.subject.keywordLow Power,Low Noise,Sensor,Analog Front-End Circuits,Instrumentation Amplifier,Biomedical Applications,en
dc.relation.page121
dc.identifier.doi10.6342/NTU201903112
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
8.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved