Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74178
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李弘文(Hung-Wen Li)
dc.contributor.authorHan-Lin Yangen
dc.contributor.author楊翰霖zh_TW
dc.date.accessioned2021-06-17T08:23:07Z-
dc.date.available2022-08-22
dc.date.copyright2019-08-22
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation1 Windgassen, T. A., Wessel, S. R., Bhattacharyya, B. & Keck, J. L. Mechanisms of bacterial DNA replication restart. Nucleic Acids Res. 46, 504-519 (2017).
2 Bhat, K. P. & Cortez, D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat. Struct. Mol. Biol. 25, 446-453 (2018).
3 Chastain, M. et al. Human CST facilitates genome-wide RAD51 recruitment to GC-rich repetitive sequences in response to replication stress. Cell Rep. 16, 1300-1314 (2016).
4 Zhang, M. et al. Mammalian CST averts replication failure by preventing G-quadruplex accumulation. Nucleic Acids Res. 47, 5243-5259 (2019).
5 Suzuki, Y., Chew, M. L. & Suzuki, Y. Role of host-encoded proteins in restriction of retroviral integration. Front. Microbiol. 3 (2012).
6 Candelli, A., Modesti, M., Peterman, E. J. & Wuite, G. J. Single-molecule views on homologous recombination. Q. Rev. Biophys. 46, 323-348 (2013).
7 Kowalczykowski, S. C. An overview of the molecular mechanisms of recombinational DNA repair. CSH. Perspect. Biol. 7, a016410 (2015).
8 Godin, S. K., Sullivan, M. R. & Bernstein, K. A. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem. Cell Biol. 94, 407-418 (2016).
9 Xu, J. et al. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat. Struct. Mol. Biol. 24, 40-46 (2017).
10 San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229-257 (2008).
11 Flynn, R. L. & Zou, L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit. Rev. Biochem. Mol. Biol. 45, 266-275 (2010).
12 Fan, J. & Pavletich, N. P. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev. 26, 2337-2347 (2012).
13 Bochkareva, E., Korolev, S., Lees‐Miller, S. P. & Bochkarev, A. Structure of the RPA trimerization core and its role in the multistep DNA‐binding mechanism of RPA. EMBO J. 21, 1855-1863 (2002).
14 Ma, C. J., Gibb, B., Kwon, Y., Sung, P. & Greene, E. C. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res. 45, 749-761 (2016).
15 Chen, L.-Y. & Lingner, J. CST for the grand finale of telomere replication. Nucleus 4, 277-282 (2013).
16 Bhattacharjee, A., Stewart, J., Chaiken, M. & Price, C. M. STN1 OB fold mutation alters DNA binding and affects selective aspects of CST function. PLoS Genet. 12, e1006342 (2016).
17 Bhattacharjee, A., Wang, Y., Diao, J. & Price, C. M. Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST. Nucleic Acids Res. 45, 12311-12324 (2017).
18 Martínez, P. & Blasco, M. A. Replicating through telomeres: a means to an end. Trends Biochem. Sci. 40, 504-515 (2015).
19 Wang, F., Stewart, J. & Price, C. M. Human CST abundance determines recovery from diverse forms of DNA damage and replication stress. Cell Cycle 13, 3488-3498 (2014).
20 Stewart, J. A. et al. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J. 31, 3537-3549 (2012).
21 Chang, T.-T. Single-Molecule FRET Studies on Nucleoprotein Filament Dynamics of RecA E38K Mutant Protein Master thesis, National Taiwan University, (2016).
22 Liao, T.-W. Developing Single-Molecule Fluorescence Imaging Platform to Study Dissociation Dynamics of RAD51 Recombinase Filament Master thesis, National Taiwan University, (2018).
23 Single-Molecule Techniques. (Cold Spring Harbor Laboratory Press, 2008).
24 Howarter, J. A. & Youngblood, J. P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 22, 11142-11147 (2006).
25 Hermanson, G. T. Bioconjugate techniques. (Academic press, 2013).
26 Cordes, T., Vogelsang, J. & Tinnefeld, P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018-5019 (2009).
27 Zheng, Q. et al. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 43, 1044-1056 (2014).
28 Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507-516 (2008).
29 van de Meent, J.-W., Bronson, J. E., Wiggins, C. H. & Gonzalez Jr, R. L. Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophys. J. 106, 1327-1337 (2014).
30 Qiu, Y. et al. Srs2 prevents Rad51 filament formation by repetitive motion on DNA. Nat. Commun. 4, 2281 (2013).
31 Gibb, B. et al. Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging. PLoS One 9, e87922 (2014).
32 Feng, X. et al. CTC1-STN1 terminates telomerase while STN1-TEN1 enables C-strand synthesis during telomere replication in colon cancer cells. Nat. Commun. 9, 2827 (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74178-
dc.description.abstract人類CTC1, STN1,及TEN1複合體 (CST) 蛋白和Replication Protein A (RPA) 皆為單股DNA結合蛋白,都具有與單股DNA結合的oligonucleotide / oligosaccharide binding (OB) 結構區域。我們使用高解析單分子螢光共振能量轉移 (smFRET),比較不同蛋白濃度下,CST、RPA與含多TG鹼基的3端單股DNA結合之FRET值分佈,量測結合、解離速率及解離常數。與RPA相比,CST在單股DNA上的解離常數較大,CST有數十秒尺度的結合/解離現象。隨著溶液中游離CST濃度增加,CST結合、脫離單股DNA速率皆會隨之上升。然而,當溶液中多餘的CST被移除時,CST與DNA的解離時間則超過1小時。表示CST的結合、解離速率和溶液中的CST濃度有關。RAD51是參與DNA同源重組修復的重要蛋白,RAD51會在單股DNA上形成核蛋白絲。在重啟停滯複製叉時,CST、RPA、RAD51等蛋白皆會參與反應。實驗發現當溶液加入RAD51同源重組酵素時,RAD51可以競爭並取代約30 % 原本結合在DNA上CST蛋白,形成RAD51核蛋白絲。然而,RAD51卻無法競爭已經結合在DNA上的RPA蛋白。儘管RPA比CST有更高的單股DNA親合力,當CST加入覆滿RPA的單股DNA,CST依然可結合上覆滿RPA的單股DNA。實驗結果指出CST在單股DNA上的結合、解離和OB區域結構與CST部分解離有關,露出部分的單股DNA,讓RAD51有機會在該段單股DNA上成核,形成核蛋白絲。zh_TW
dc.description.abstractHuman CST (CTC1, STN1, and TEN1) complex and Replication Protein A (RPA) are single-stranded DNA (ssDNA) binding proteins. Both contain several canonical OB-fold domains responsible for ssDNA binding. We used high-resolution single-molecule fluorescence resonance energy transfer (smFRET) experiments to directly measure the association and dissociation of CST and RPA on TG-rich 3′ overhang ssDNA, and determined the thermodynamics and kinetics parameters. RPA stably stays bound to DNA, but CST binds and dissociates dynamically in tens of seconds. Interestingly, at higher CST concentrations, both their on rate and off rate increase. However, the dissociation dwell time of CST becomes very long (> 1 hour) when the solution contains no free CST, suggesting that CST dissociation depends on the excess CST in the solution. RAD51 is an essential protein involved in DNA homologous recombination. RAD51 can oligomerize on the ssDNA to form nucleoprotein filaments. CST, RPA, and RAD51 are important components in rescuing stalled replication forks. RAD51 can remove roughly 30 % CST from the CST-bound ssDNA and form stable RAD51 nucleoprotein filament. However, RAD51 alone cannot remove the RPA from RPA-bound ssDNA. Despite the fact that RPA has stronger ssDNA binding affinity than CST, CST can still bind to the RPA-bound ssDNA. In summary, our model suggests that partial dissociation of OB-fold domains of CST is responsible for the dynamic nature of CST binding. Thus, RAD51 can nucleate on the exposed ssDNA originally occupied by CST to assemble nucleoprotein filament.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:23:07Z (GMT). No. of bitstreams: 1
ntu-108-R06223129-1.pdf: 6626264 bytes, checksum: 8bb448b5cd027bcc991c3f21efe8d8dd (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents圖目錄 iv
表目錄 vi
1 緒論 1
1.1 重啟複製叉 1
1.2 RAD51 3
1.3 RPA 5
1.4 CST 6
1.5 研究動機 8
2研究方法與步驟 9
2.1 蛋白質來源 9
2.2 DNA基質設計 9
2.3 螢光顯微鏡架設 11
2.4 PEG修飾玻片製作 14
2.5 PCR DNA黏合過程 17
2.6 溶液除氧系統配方 18
2.7 實驗流程 19
2.8 單分子螢光共振能量轉移數據處理 26
3 實驗結果與討論 36
3.1 CST結合TG-rich 15 nt解離常數為1.5 nM 36
3.2 RPA結合DNA能力比CST好 39
3.3 在短單股DNA下,CST偏好G-rich序列 40
3.4 FRET軌跡顯示CST的Rateon & Rateoff皆隨[CST]上升而增加 42
3.5 溶液中沒有游離CST時,CST脫落DNA停滯時間約2小時 46
3.6 Non-G rich下,RAD51的FRET值和RPA、CST都不同 48
3.7 RAD51可競爭已結合單股DNA的CST,形成filament 50
3.8 CST可結合覆滿RPA的單股DNA 56
4 結論與未來展望 60
4.1 結論 60
4.2 未來展望 62
螢光修飾CST、RPA 62
螢光光鉗 63
純化RPA、CST的單一組成蛋白或缺少一組成的雙異核蛋白 63
參考文獻 65
dc.language.isozh-TW
dc.title利用單分子螢光共振能量轉移研究人類端粒結合蛋白的熱力學和動力學性質zh_TW
dc.titleSingle Molecule FRET Identified the Dynamic Nature of Human Telomere-Binding Protein CST Complexen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee冀宏源(Hung-Yuan (Peter),林敬哲(Jing-Jer Lin),詹迺立(Nei-Li Chan),范秀芳(Hsiu-Fang Fan)
dc.subject.keyword單分子螢光共振能量轉移,CST,RAD51,RPA,停滯複製叉,zh_TW
dc.subject.keywordsmFRET,CST,RAD51,RPA,stalled replication fork,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201903225
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
6.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved