Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄(Chieh-Huiung Kuan)
dc.contributor.authorHung-Yu Linen
dc.contributor.author林宏諭zh_TW
dc.date.accessioned2021-06-17T08:22:12Z-
dc.date.available2024-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation[1] Liao, Lei, et al. 'High-speed graphene transistors with a self-aligned nanowire gate.' Nature 467.7313 (2010): 305.
[2] Liao, Lei, and Xiangfeng Duan. 'Graphene for radio frequency electronics.' Materials today 15.7-8 (2012): 328-338.
[3] Kong, Byoung Don, Zhenghe Jin, and Ki Wook Kim. 'Hot-electron transistors for terahertz operation based on two-dimensional crystal heterostructures.' Physical Review Applied 2.5 (2014): 054006.
[4] Zeng, Caifu, et al. 'Vertical graphene-base hot-electron transistor.' Nano letters 13.6 (2013): 2370-2375.
[5] Torres Jr, C.M. et al. High-current gain two-dimensional mos2-base hot-electron transistors. Nano letters, 2015. 15(12): p. 7905-7912.
[6] Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 6, 183-191 (2007).
[7] Vaziri, Sam, et al. 'A graphene-based hot electron transistor.' Nano letters 13.4 (2013): 1435-1439.
[8] Zhu, Xiaodan, et al. 'A study of vertical transport through graphene toward control of quantum tunneling.' Nano letters 18.2 (2018): 682-688.
[9] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields.”, Proc. R. Soc. London, A119, 173,1928
[10] Zubair, Ahmad, et al. 'Hot electron transistor with van der Waals base-collector heterojunction and high-performance GaN emitter.' Nano letters 17.5 (2017): 3089-3096.
[11] Guo, Hongwei, et al. 'All-two-dimensional-material hot electron transistor.' IEEE Electron Device Letters 39.4 (2018): 634-637.
[12] Vaziri, Sam, et al. 'Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors.' Nanoscale 7.30 (2015): 13096-13104.
[13] Gupta, Geetak, et al. 'Common emitter current gain> 1 in III-N hot electron transistors with 7-nm GaN/InGaN base.' IEEE Electron Device Letters 36.5 (2015): 439-441.
[14] Yang, Zhichao, et al. 'Current gain above 10 in sub-10 nm base III-Nitride tunneling hot electron transistors with GaN/AlN emitter.' Applied Physics Letters 108.19 (2016): 192101.
[15] Zubair, Ahmad. Fabrication of Graphene-on-GaN Vertical Transistors. Massachusetts Institute of Technology (MIT Cambridge United States, 2014.
[16] Vaziri, Sam, et al. 'Going ballistic: Graphene hot electron transistors.' Solid State Communications 224 (2015): 64-75.
[17] Yan, Xiao, et al. 'High performance amplifier element realization via MoS2/GaTe heterostructures.' Advanced Science 5.4 (2018): 1700830.
[18] Mehr, Wolfgang, et al. 'Vertical graphene base transistor.' IEEE Electron Device Letters 33.5 (2012): 691-693.
[19] Zeng, Caifu, et al. 'Vertical graphene-base hot-electron transistor.' Nano letters 13.6 (2013): 2370-2375.
[20] Kong, Byoung Don, Zhenghe Jin, and Ki Wook Kim. 'Hot-electron transistors for terahertz operation based on two-dimensional crystal heterostructures.' Physical Review Applied 2.5 (2014): 054006.
[21] Essaadali, Riadh, et al. 'Modeling of extrinsic parasitic elements of Si based GaN HEMTs using two step de-embedding structures.' 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON). IEEE, 2015.
[22] Krasnozhon, Daria, et al. 'MoS2 transistors operating at gigahertz frequencies.' Nano letters 14.10 (2014): 5905-5911.
[23] Yeo, Yee Chia, et al. 'Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric.' IEEE Electron Device Letters 21.11 (2000): 540-542.
[24] Snow, E. H. (1967). Fowler-Nordheim tunneling in SiO2 films. Solid State Communications, 5(10), 813-815.
[25] Venica, Stefano, et al. 'Simulation of DC and RF performance of the graphene base transistor.' IEEE Transactions on Electron Devices 61.7 (2014): 2570-2576.
[26] Kong, B. D., et al. 'Two dimensional crystal tunneling devices for THz operation.' Applied Physics Letters 101.26 (2012): 263112.
[27] Wang, Han, et al. 'Black phosphorus radio-frequency transistors.' Nano letters 14.11 (2014): 6424-6429.
[28] Cheng, Rui, et al. 'Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics.' Nature communications 5 (2014): 5143.
[29] Krasnozhon, Daria, et al. 'MoS2 transistors operating at gigahertz frequencies.' Nano letters 14.10 (2014): 5905-5911.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74156-
dc.description.abstract雙極性電晶體(Bipolar Transistors,BJTs)是高頻的重要元件之一,但它的截止頻率受限於base的厚度,因此二維材料是一個極佳的選擇作為base的材料,由於二維材料原子層級的厚度。垂直式二維材料熱電子電晶體(Vertical 2D material Hot Electron Transistors)被視為非常具有前瞻性的元件,應用於高頻領域,在理論上已經可以達到兆赫茲(Terahertz)等級的程度[1]。這是一個和雙極性電晶體(Bipolar Transistors,BJTs)極為相像的電子元件,其主要有三個部分,射極(Emitter)、基極(Base)以及集極(Collector)。其特別的之處還有在基極以及射極中間成長氧化層(Base-emitter Insulator),作為穿隧氧化層(Tunneling Oxide);集極以及基極中間也成長氧化層(Collector-base Insulator),作為過濾氧化層(Filtering Oxide),使載子以穿隧(Tunneling)的方式從射極穿隧道基極,再從基極穿隧至集極,使用高動能、高速的熱電子(Hot Electron)作為載子傳輸。
在這項研究實驗中,使用高參雜n型矽基板(Highly Doped N-type Silicon Substrate,n++ Si)作為射極,並且上方使矽基板自然生長出約三奈米厚的二氧化矽 (SiO2)的原生氧化層(Native Oxide),作為穿隧氧化層,石墨烯(Graphene)作為該元件的基極,十奈米厚二氧化鈦(TiO2)以及三十奈米厚二氧化鉿(HfO2)作為雙層的過濾氧化層(Double Layer Filtering Oxide),以鈦(Ti)金屬作為集極。
目前的文獻尚無製作出有高頻響應的垂直式二維材料熱電子電晶體,其主要原因為元件的表現、效益不佳,其主要參考的指標有共基極電流增益(Common-base Current Gain,α)、共射極電流增益(Common-emitter Current Gain,β)以及電流密度(Current Density,JC),而在這項研究中,成功利用上述之結構製作出高效益的之石墨烯熱電子電晶體,其共基極電流增益α達0.96;共射極電流增益β達18;電流密度JC達7 A/cm2,且元件之截止頻率(Cut-off Frequency,fT)可達5.5 GHz。
zh_TW
dc.description.abstractOne of the most important high frequency device is bipolar transistors (BJTs). The cut-off (fT) is limited for the thickness of base region so 2D materials is a great candidate as a material for base region for its ultra-thin thickness. Theoretically, vertical 2D material Hot Electron Transistors is seen to be a high potential device for potential Terahertz applications. It is like a bipolar transistor and there are regions, emitter, base and collector, too. Furthermore, there are two potential barriers. One is between base and emitter, tunneling oxide, and the other one is between collector and base, filtering oxide. The carriers can tunnel from emitter to base and then tunnel from base to collector. The carrier we use is hot electron which has high kinetic energy and high speed.
In this experiment, we use highly doped n-type silicon substrate as emitter, about 3 nm thickness native silicon dioxide (SiO2) as tunneling oxide, graphene as base, TiO2 (10 nm) and HfO2 (30 nm) as double layer filtering oxide and Titanium (Ti) as collector.
We are the first team to successfully demonstrate a graphene-based hot electron transistor with high frequency response. The device we fabricated remains high common-base current gain (α~0.96), high common-emitter current gain (β~18), high current density JC (~7 A/cm2) and the cut-off frequency (fT) achieves ~5.5 GHz.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:22:12Z (GMT). No. of bitstreams: 1
ntu-108-R06941072-1.pdf: 2682752 bytes, checksum: 9a2a5702dd8af01824391d4970fa314b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vii
List of Tables x
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 2
1.3.1 石墨烯熱電子電晶體(Graphene-based Hot Electron Transistor) 2
1.3.2 二硫化鉬熱電子電晶體(MoS2-based Hot Electron Transistor) 3
1.4 論文架構 4
Chapter 2 理論基礎 5
2.1 熱電子電晶體之機制及操作原理 5
2.2 二維材料(2D Materials) 6
2.2.1 二維材料(2D Materials) 6
2.2.2 石墨烯(Graphene) 8
2.3 穿隧機制(Tunneling Mechanism) 9
2.3.1 直接穿隧(Direct Tunneling) 9
2.3.2 Fowler-Nordheim 穿隧(F-N Tunneling) 10
2.4 金屬和半導體接觸原理 11
2.4.1 歐姆接觸(Ohmic Contact) 12
2.4.2 蕭特基接觸(Schottky Contact) 13
Chapter 3 實驗儀器、元件設計以及製備 14
3.1 製程儀器簡介 14
3.1.1 黃光微影(Lithography) 14
3.1.2 感應式耦合電漿蝕刻(Inductively Coupled Plasma-Reactive Ion Etching,ICP-RIE) 15
3.1.3 電漿輔助化學氣相沉積鍍膜(Plasma Enhanced CVD,PECVD) 16
3.1.4 化學機械平坦化(Chemical-Mechanical Planarization,CMP) 17
3.1.5 反應式離子蝕刻(Reactive Ion Etching,RIE) 18
3.1.6 電子束蒸鍍(E-Gun Evaporation) 19
3.1.7 原子層沉積(Atomic Layer Deposition,ALD) 20
3.2 量測儀器簡介 21
3.2.1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 21
3.2.2 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 22
3.2.3 能量色散X射線譜(Energy-dispersive X-ray Spectroscopy,EDS) 23
3.3 元件設計 23
3.4 製程流程 24
3.4.1 射極以及穿隧氧化層之製作 25
3.4.2 石墨烯轉印 (Transfer) 以及基極之製作 27
3.4.3 過濾氧化層以及集極之製作 31
Chapter 4 實驗結果以及討論 34
4.1 電性量測(DC measurement) 34
4.1.1 兩端量測(Two-terminal measurement) 34
4.1.2 三端量測(Three-terminal measurement) 36
4.1.3 消除漏電流 42
4.2 高頻量測(RF measurement) 43
4.2.1 H參數 43
4.2.2 高頻量測結果 45
Chapter 5 結果及未來展望 50
5.1 結果 50
5.2 未來展望 51
References 52
dc.language.isozh-TW
dc.subject二維材料zh_TW
dc.subject石墨烯zh_TW
dc.subject垂直式熱電子電晶體zh_TW
dc.subject熱電子zh_TW
dc.subject穿隧zh_TW
dc.subject高頻zh_TW
dc.subject截止頻率zh_TW
dc.subjecthot electronen
dc.subject2D materialsen
dc.subjectvertical 2D hot electron transistorsen
dc.subjectcut-off frequencyen
dc.subjecthigh frequencyen
dc.subjecttunnelingen
dc.subjectgrapheneen
dc.title石墨烯熱電子電晶體效益增進及高頻特性之研究zh_TW
dc.titleImproved Graphene-based Hot Electron Transistor
for High Frequency Applications
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor藍彥文(Yann-Wen Lan)
dc.contributor.oralexamcommittee孫允武(Yuen-Wuu Suen),孫建文(Kien-Wen Sun),蘇炎坤(Yan-Kuin Su)
dc.subject.keyword二維材料,石墨烯,垂直式熱電子電晶體,熱電子,穿隧,高頻,截止頻率,zh_TW
dc.subject.keyword2D materials,graphene,vertical 2D hot electron transistors,hot electron,tunneling,high frequency,cut-off frequency,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201903363
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved