請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74151
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張麗冠(Li-Kwan Chang) | |
dc.contributor.author | Bo-Hung Liao | en |
dc.contributor.author | 廖博弘 | zh_TW |
dc.date.accessioned | 2021-06-17T08:22:00Z | - |
dc.date.available | 2024-08-16 | |
dc.date.copyright | 2019-08-16 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | Adamson, A.L., Kenney, S., 2001. Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. Journal of Virology 75, 2388-2399.
Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Séguin, C., Tuffnell, P.S., Barrell, B.G., 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211. Baker, M.L., Jiang, W., Rixon, F.J., Chiu, W., 2005. Common ancestry of herpesviruses and tailed DNA bacteriophages. Journal of Virology 79, 14967-14970. Bell, P., Lieberman, P.M., Maul, G.G., 2000. Lytic but not latent replication of Epstein- Barr virus is associated with PML and induces sequential release of nuclear domain 10 proteins. Journal of Virology 74, 11800-11810. Bertani, G., 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology 62, 293-300. Brown, J.C., Newcomb, W.W., 2011. Herpesvirus capsid assembly: insights from structural analysis. Current Opinion in Virology 1, 142-149. Buisson, M., Valette, E., Hernandez, J.F., Baudin, F., Ebel, C., Morand, P., Seigneurin, J.M., Arlaud, G.J., Ruigrok, R.W.H., 2001. Functional determinants of the Epstein-Barr virus protease11. Journal of Molecular Biology 311, 217-228. Burkitt, D., 1962. A children's cancer dependent on climatic factors. Nature 194, 232- 234. Capuano, C.M., Grzesik, P., Kreitler, D., Pryce, E.N., Desai, K.V., Coombs, G., McCaffery, J.M., Desai, P.J., 2014a. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly. Journal of General Virology 95, 1755-1769. Capuano, C.M., Grzesik, P., Kreitler, D., Pryce, E.N., Desai, K.V., Coombs, G., McCaffery, J.M., Desai, P.J., 2014b. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly. Journal of General Virology 95, 1755-1769. Cardone, G., Heymann, J.B., Cheng, N., Trus, B.L., Steven, A.C., 2012. Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpesvirions. Advance in Experimental Medicine and Biology 726, 423-439. Chang, L.K., Liu, S.T., 2000. Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Research 28, 3918-3925. Chang, L.K., Lee, Y.H., Cheng, T.S., Hong, Y.R., Lu, P.J., Wang, J.J., Wang, W.H., Kuo, C.W., Li, S.S., Liu, S.T., 2004. Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. Journal of Biological Chemistry 279, 38803-38812. Chiu, Y.F., Sugden, B., Chang, P.J., Chen, L.-W., Lin, Y.J., Lan, Y.C., Lai, C.H., Liou, J.Y., Liu, S.T., Hung, C.H., 2012. Characterization and intracellular trafficking of Epstein-Barr virus BBLF1, a protein involved in virion maturation. Journal of Virology 86, 9647. Chu, E.A., Wu, J.M., Tunkel, D.E., Ishman, S.L., 2008. Nasopharyngeal carcinoma: the role of the Epstein-Barr virus. Medscape journal of medicine 10, 165-165. Cockrell, S.K., Sanchez, M.E., Erazo, A., Homa, F.L., 2009. Role of the UL25 protein in Herpes simplex virus DNA encapsidation. Journal of Virology 83, 47. Cohen, J.I., 2000. Epstein-Barr virus Infection. New England Journal of Medicine 343, 481-492. Dai, X., Gong, D., Xiao, Y., Wu, T.T., Sun, R., Zhou, Z.H., 2015. CryoEM and mutagenesis reveal that the smallest capsid protein cements and stabilizes Kaposi's sarcoma-associated herpesvirus capsid. Proceedings of the National Academy of Sciences 112, E649. Dambaugh, T., Beisel, C., Hummel, M., King, W., Fennewald, S., Cheung, A., Heller, M., Raab-Traub, N., Kieff, E., 1980. Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proceedings of the National Academy of Sciences of the United States of America 77, 2999-3003. Desai, P., Person, S., 1998. Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. Journal of Virology 72, 7563-7568. Dokland, T., 1999. Scaffolding proteins and their role in viral assembly. Cellular and Molecular Life Science 56, 580-603 Dolyniuk, M., Pritchett, R., Kieff, E., 1976a. Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. Journal of Virology 17, 935-949. Dolyniuk, M., Wolff, E., Kieff, E., 1976b. Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. Journal of Virology 18, 289-297. Donaghy, G., Jupp, R., 1995. Characterization of the Epstein-Barr virus proteinase and comparison with the human cytomegalovirus proteinase. Journal of Virology 69, 1265. Epstein, M.A., Achong, B.G., Barr, Y.M., 1964. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. The Lancet 283, 702-703. Epstein, M.A., Barr, Y.M., 1964. Cultivation in vitro of human lymphoblasts from Burkitt's malignant lymphoma. The Lancet 283, 252-253. Erickson, K.D., Bouchet-Marquis, C., Heiser, K., Szomolanyi-Tsuda, E., Mishra, R., Lamothe, B., Hoenger, A., Garcea, R.L., 2012. Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS pathogens 8, e1002630-e1002630. Feederle, R., Neuhierl, B., Baldwin, G., Bannert, H., Hub, B., Mautner, J., Behrends, U., Delecluse, H.J., 2006. Epstein-Barr virus BNRF1 protein allows efficient transfer from the endosomal compartment to the nucleus of primary B lymphocytes. Journal of Virology 80, 9435. Fixman, E.D., Hayward, G.S., Hayward, S.D., 1992. Trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. Journal of Virology 66, 5030-5039. Flavell, K.J., Murray, P.G., 2000. Hodgkin's disease and the Epstein-Barr virus. Molecular pathology MP 53, 262-269. Fokine, A., Leiman, P.G., Shneider, M.M., Ahvazi, B., Boeshans, K.M., Steven, A.C., Black, L.W., Mesyanzhinov, V.V., Rossmann, M.G., 2005. Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proceedings of the National Academy of Sciences of the United States of America 102, 7163. Fred L Homa, J.C.B., 1997. Capsid assembly and DNA packaging in Herpes simplex virus. Medical Virology 7, 107-122. Fujii, K., Yokoyama, N., Kiyono, T., Kuzushima, K., Homma, M., Nishiyama, Y., Fujita, M., Tsurumi, T., 2000. The Epstein-Barr virus Pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. Journal of Virology 74, 2550. Gao, M., Matusick-Kumar, L., Hurlburt, W., DiTusa, S.F., Newcomb, W.W., Brown,J.C., McCann, P.J., 3rd, Deckman, I., Colonno, R.J., 1994. The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. Journal of Virology 68, 3702-3712. Germi, R., Effantin, G., Grossi, L., Ruigrok, R.W., Morand, P., Schoehn, G., 2012. Three-dimensional structure of the Epstein-Barr virus capsid. Journal of General Virolog 93, 1769-1773. Graham, F.L., Smiley, J., Russell, W.C., Nairn, R., 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36, 59-74. Granato, M., Feederle, R., Farina, A., Gonnella, R., Santarelli, R., Hub, B., Faggioni, A., Delecluse, H.J., 2008. Deletion of Epstein-Barr virus BFLF2 leads to impaired viral DNA packaging and primary egress as well as to the production of defective viral particles. Journal of Virology 82, 4042-4051. Hammerschmidt, W., Sugden, B., 1988. Identification and characterization of ori-Lyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427-433. Harabuchi, Y., Yamanaka, N., Kataura, A., Imai, S., Kinoshita, T., Osato, T., 1990. Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. The Lancet 335, 128-130. Hardwick, J.M., Lieberman, P.M., Hayward, S.D., 1988. A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. Journal of Virology 62, 2274-2284. Hatton, O.L., Harris-Arnold, A., Schaffert, S., Krams, S.M., Martinez, O.M., 2014. The interplay between Epstein-Barr virus and B lymphocytes: implications for infection, immunity, and disease. Immunologic research 58, 268-276. Henson, B.W., Perkins, E.M., Cothran, J.E., Desai, P., 2009. Self-assembly of Epstein- Barr virus capsids. Journal of Virology 83, 3877-3890. Heymann, J.B., Cheng, N., Newcomb, W.W., Trus, B.L., Brown, J.C., Steven, A.C., 2003. Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nature Structural & Molecular Biology 10, 334-341. Hutt-Fletcher, L.M., 2007. Epstein-Barr virus entry. Journal of Virology 81, 7825. Johannsen, E., Luftig, M., Chase, M.R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D., Kieff, E., 2004a. Proteins of purified Epstein-Barr virus. Proceedings of the National Academy of Sciences of the United States of America 101, 16286. Johannsen, E., Luftig, M., Chase, M.R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D., Kieff, E., 2004b. Proteins of purified Epstein-Barr virus. Proceedings of the National Academy of Sciences of the United States of America 101, 16286-16291. Jones, J.F., Shurin, S., Abramowsky, C., Tubbs, R.R., Sciotto, C.G., Wahl, R., Sands, J., Gottman, D., Katz, B.Z., Sklar, J., 1988. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. New England Journal of Medicine 318, 733-741. Kallin, B., Luka, J., Klein, G., 1979. Immunochemical characterization of Epstein-Barr virus-associated early and late antigens in n-butyrate-treated P3HR-1 cells. Journal of Virology 32, 710-716. Kobayashi, R., Kato, A., Sagara, H., Watanabe, M., Maruzuru, Y., Koyanagi, N., Arii, J., Kawaguchi, Y., 2017. Herpes simplex virus 1 small capsomere-interacting protein VP26 regulates nucleocapsid maturation. Journal of Virology 91, e01068-01017. Laux, G., Freese, U.K., Fischer, R., Polack, A., Kofler, E., Bornkamm, G.W., 1988. TPA-inducible Epstein-Barr virus genes in Raji cells and their regulation. Virology 162, 503-507. Li, M., Chen, T., Zou, X., Xu, Z., Wang, Y., Wang, P., Ou, X., Li, Y., Chen, D., Peng, T., Wang, Y., Cai, M., 2018. Characterization of the nucleocytoplasmic transport mechanisms of Epstein-Barr virus BFLF2. Cellular Physiology and Biochemistry 51, 1500-1517. Li, Y., Zhao, L., Wang, S., Xing, J., Zheng, C., 2012. Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1. Journal of General Virology 93, 1869-1875. Lieberman, P., 1994. Identification of functional targets of the Zta transcriptional activator by formation of stable preinitiation complex intermediates. Molecular and cellular biology 14, 8365-8375. Mettenleiter, T.C., 2002. Herpesvirus assembly and egress. Journal of Virology 76, 1537. Nandakumar, A., Uwatoko, F., Yamamoto, M., Tomita, K., Majima, H.J., Akiba, S., Koriyama, C., 2017. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection. Tumor Biology 39, 1010428317717718. Nemerow, G.R., Mold, C., Schwend, V.K., Tollefson, V., Cooper, N.R., 1987. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. Journal of Virology 61, 1416. Neuhierl, B., Delecluse, H.J., 2006. The Epstein-Barr virus BMRF1 gene is essential for lytic virus replication. Journal of Virology 80, 5078. Newcomb, W.W., Homa, F.L., Thomsen, D.R., Trus, B.L., Cheng, N., Steven, A., Booy, F., Brown, J.C., 1999. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. Journal of Virology 73, 4239-4250. Newcomb, W.W., Trus, B.L., Cheng, N., Steven, A.C., Sheaffer, A.K., Tenney, D.J., Weller, S.K., Brown, J.C., 2000. Isolation of Herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. Journal of Virology 74, 1663-1673. Nicholson, P., Addison, C., Cross, A.M., Kennard, J., Preston, V.G., Rixon, F.J., 1994. Localization of the Herpes simplex virus type 1 major capsid protein VP5 to the Cell nucleus requires the abundant scaffolding protein VP22a. Journal of General Virology 75, 1091-1099. Niedobitek, G., Agathanggelou, A., Herbst, H., Whitehead, L., Wright, D.H., Young, L.S., 1997. Epstein-Barr virus (EBV) infection in infectious mononucleosis: virus latency, replication and phenotype of EBV-infected cells. The Journal of Pathology 182, 151-159. Niedobitek, G., Meru, N., Delecluse, H.J., 2001. Epstein-Barr virus infection and human malignancies. International journal of experimental pathology 82, 149-170. Pagano, J.S., 1999. Epstein-Barr virus: the first human tumor virus and its role in cancer. Proceedings of the Association of American Physicians 111, 573-580. Perkins, E.M., Anacker, D., Davis, A., Sankar, V., Ambinder, R.F., Desai, P., 2008. Small capsid protein pORF65 is essential for assembly of Kaposi's sarcoma-associated herpesvirus capsids. Journal of Virology 82, 7201-7211. Raab-Traub, N., Flynn, K., 1986. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47, 883-889. Rixon, F.J., Addison, C., McGregor, A., Macnab, S.J., Nicholson, P., Preston, V.G.,Tatman, J.D., 1996. Multiple interactions control the intracellular localization of the Herpes simplex virus type 1 capsid proteins. Journal of General Virology 77, 2251- 2260. Rixon, F.J., McNab, D., 1999. Packaging-competent capsids of a Herpes simplex virus temperature-sensitive mutant have properties similar to those of in vitro-assembled procapsids. Journal of Virology 73, 5714. Robertson, P., Beynon, S., Whybin, R., Brennan, C., Vollmer-Conna, U., Hickie, I., Lloyd, A., 2003. Measurement of EBV-IgG anti-VCA avidity aids the early and reliable diagnosis of primary EBV infection. Journal of Medical Virology 70, 617-623. Shannon-Lowe, C., Rowe, M., 2011. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLOS Pathogens 7, e1001338. Shimizu, N., Tanabe-Tochikura, A., Kuroiwa, Y., Takada, K., 1994. Isolation of Epstein- Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt's lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. Journal of Virology 68, 6069-6073. Spencer, J.V., Newcomb, W.W., Thomsen, D.R., Homa, F.L., Brown, J.C., 1998. Assembly of the Herpes simplex virus capsid: preformed triplexes bind to the nascent capsid. Journal of Virology 72, 3944. Tanner, J., Weis, J., Fearon, D., Whang, Y., Kieff, E., 1987. Epstein-barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50, 203-213. Tarbouriech, N., Buisson, M., Geoui, T., Daenke, S., Cusack, S., Burmeister, W.P., 2006. Structural genomics of the Epstein-Barr virus. Acta Crystallographisca Section D 62, 1276-1285. Thomsen, D.R., Roof, L.L., Homa, F.L., 1994. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. Journal of Virology 68, 2442. Trus, B.L., Heymann, J.B., Nealon, K., Cheng, N., Newcomb, W.W., Brown, J.C., Kedes, D.H., Steven, A.C., 2001. Capsid structure of Kaposi's sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, Herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. Journal of Virology 75, 2879-2890. Trus, B.L., Homa, F.L., Booy, F.P., Newcomb, W.W., Thomsen, D.R., Cheng, N., Brown, J.C., Steven, A.C., 1995. Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. Journal of Virology 69, 7362-7366. Vetsika, E.K., Callan, M., 2004. Infectious mononucleosis and Epstein-Barr virus. Expert Reviews in Molecular Medicine 6, 1-16. Visalli, R.J., Schwartz, A.M., Patel, S., Visalli, M.A., 2019. Identification of the Epstein Barr virus portal. Virology 529, 152-159. Wang, W.H., Chang, L.K., Liu, S.T., 2011. Molecular interactions of Epstein-Barr virus capsid proteins. Journal of Virology 85, 1615-1624. Wang, W.H., Kuo, C.-W., Chang, L.K., Hung, C.C., Chang, T.H., Liu, S.T., 2015. Assembly of Epstein-Barr virus capsid in promyelocytic leukemia nuclear bodies. Journal of Virology 89, 8922-8931. Wessel, D., Flügge, U.I., 1984. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry 138, 141-143. Westphal, E.M., Blackstock, W., Feng, W., Israel, B., Kenney, S.C., 2000. Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Research 60, 5781-5788. White, C.A., Stow, N.D., Patel, A.H., Hughes, M., Preston, V.G., 2003. Herpes simplex virus type 1 portal protein UL6 interacts with the putative terminase subunits UL15 and UL28. Journal of Virology 77, 6351-6358. Yu, X., Jih, J., Jiang, J., Zhou, Z.H., 2017. Atomic structure of the Human Cytomegalovirus capsid with its securing tegument layer of pp150. Scienc 356,eaam6892. Zerbini, M., Musiani, M., La Placa, M., 1985. Effect of heat shock on Epstein-Barr virus and cytomegalovirus expression. Journal of General Virology 66 (Pt 3), 633-636. Zhu, H., 2012. Sucrose gradient analysis of proteins. Bio-protocol 2, e194. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74151 | - |
dc.description.abstract | Epstein-BarrVirus(EBV),屬於皰疹病毒 γ亞科,已被發現和許多腫瘤性癌症有關。 EBV 平時處於潛伏期,當受到誘導或環境刺激時,會進入溶裂期並形成病毒顆粒。 在溶裂期的過程中,轉譯出的外鞘蛋白質會進入細胞核進行外鞘組裝。但在六種外 鞘蛋白質中,卻只有 BORF1、BVRF2 和 BdRF1 具有入核序列,並可以藉此序列 進入細胞核,其餘外鞘蛋白質的入核機制則尚未完全明瞭。在簡單皰疹病毒中,架 構蛋白質具有協助主外鞘蛋白質入核的能力 ; 然而在 EBV 中,免疫螢光染色的結 果發現只有在 BFRF3 共同存在的情形下,VCA 才能藉由 BdRF1 進入細胞核。因 此,本研究欲探究 BFRF3 在 VCA 入核機制中所扮演的角色。首先證實了 VCA 會 與 BFRF3 結合,接著蔗糖濃度梯度分析的結果顯示 BFRF3 會解開 VCA 的多聚體, 並以氨基酸剔除的實驗證實 BFRF3 氨基酸序列 1-65 的區段負責解開 VCA 的聚合 體。最後,本研究也發現 VCA、BdRF1 和 BFRF3 入核後會聚集於核內的 PML- NBs。綜合以上結果,本研究對於 EBV 的外鞘蛋白質如何入核進行外鞘的組裝提 出更深入的機制探討。 | zh_TW |
dc.description.abstract | Epstein-Barr Virus (EBV) belongs to the gammaherpesvirus family, and is known to be associated with several neoplastic diseases. EBV usually remains latent after infection. Upon stimulated by environmental factors, EBV would enter into the lytic cycle and then produce infective viral particles. During the lytic cycle, capsid proteins need to be translocated into the nucleus for capsid assembly. Among them, only BORF1, BVRF2, and BdRF1 contain the nuclear localization signal (NLS), while the translocation pathways of other capsid proteins are unclear. In herpes simplex virus 1 (HSV-1), scaffold protein is responsible for the translocation of major capsid protein. However, the immunofluorescence results indicated that translocation of VCA is not dependent on BdRF1, unless BFRF3 is also present. Therefore, this study aims to clarify the involvement of BFRF3 in the translocation of VCA. This study found that BFRF3 binds to VCA. Sucrose gradient analysis subsequently revealed that BFRF3 is required for the reduction of VCA oligomerization. Deletion analysis indicates that amino acid residues 1-65 of BFRF3 is required for VCA de-oligomerization. Finally, this study confirms that VCA, BFRF3, and BdRF1 aggregate at promyelocytic leukemia nuclear bodies (PML- NBs). The study provides insight into the mechanism how capsid proteins were translocated into the nucleus for capsid assembly. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:22:00Z (GMT). No. of bitstreams: 1 ntu-108-R06b22038-1.pdf: 26248932 bytes, checksum: 6411157e340049c91015c5900c2b476b (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝I
摘要II Abstract III 常用縮寫表 IV 目錄 V 1 前言................1 1.Epstein-Barr virus (EBV) 的發現與特性............................1 1.1 EBV 的發現與相關疾病.....................................1 1.2 EBV 的結構.............................................2 1.3 EBV 的遺傳物質........................................................3 1.4 EBV 的生活史................3 病毒顆粒的組成與形成過程 ...............................................................................5 2.1 皰疹病毒的外鞘結構.......................................................................................5 2.2 EBV 的外鞘結構..............................................7 2.3 皰疹病毒外鞘蛋白質間的作用與自組裝機制...............................................8 2.4 EBV 的小外鞘蛋白質 BFRF3..........................................................................9 2.5 皰疹病毒外鞘的成熟過程.............................................................................11 2.6 EBV 外鞘的成熟過程.....................................................................................12 2.7 皰疹病毒顆粒的生成過程.............................................................................13 外鞘蛋白質的入核 .............................................................................................13 3.1 皰疹病毒的外鞘蛋白質入核路徑.................................................................13 3.2 EBV 的外鞘蛋白質入核路徑.........................................................................14 研究目的 ..............16 材料與方法 ....17 1. 細胞株 .........17 2. 細菌 ......17 3. 質體與抗體 ...18 4. 質體 DNA 的萃取.......18 5. 細胞轉染 .........18 6. GST 融合蛋白質沉降分析 (GST Pull-down) ...................................................18 7. 共同免疫沉降分析 (Co-immunoprecipitation) .................................................19 8. SDS-PAGE 蛋白質膠體電泳及西方點墨法分析 (Western blot analysis).......20 9. 免疫螢光染色分析 (Immunofluorescence analysis).........................................20 10. 蔗糖濃度梯度分析 (Sucrose gradient analysis)..............................................21 結果 ....23 1. VCA 無法藉由 BdRF1 入核 ..............23 2. BFRF3 協助 BdRF1 將 VCA 轉移至宿主細胞細胞核中 ................................24 3. VCA 和 BFRF3 在 in vivo 和 in vitro 的結合....................................................25 4. BFRF3 會改變 VCA 的多聚體型態 ..................................................................26 5. BFRF3 的氨基酸序列 1-65 對 VCA 聚合體型態的影響.................................27 6. BFRF3 透過氨基酸序列 1-88 協助 VCA 入核.................................................27 7. VCA 藉由 BdRF1 於細胞核內再次形成多聚體 ..............................................28 8. 進入細胞核內的外鞘蛋白質會集中於 PML-NBs 區域...................................29 討論 ............................31 1. VCA 和 BFRF3 在細胞中的結合 ......................................................................32 2. 不同種 BFRF3 融合蛋白質對於免疫螢光染色分析的影響 ...........................33 3. 外鞘蛋白質對於 VCA 聚合體型態的影響.......................................................33 4. BFRF3 重要的氨基酸片段可能的生理功能 ....................................................35 5. VCA、BFRF3 和 BdRF1 入核後會集中於 PML-NBs 中................................36 圖表 .....................................38 表 1、本研究使用的質體 .....38 表 2、本研究使用的抗體 ......42 圖 1、EBV 的結構..............43 圖 2、成熟的 EBV 外鞘..............44 圖 3、EBV 外鞘蛋白質在 293T 細胞中的分佈情形..............................................45 圖 4、BdRF1 和 BFRF3 對於 VCA 入核的影響 ....................................................47 圖 5、VCA 會和 BFRF3 結........48 圖 6、BFRF3 和其餘外鞘蛋白質對 VCA 聚合體型態的影響 ..............................51 圖 7、BFRF3 氨基酸片段對 VCA 聚合體型態的影響 ..........................................54 圖 8、BFRF3 的氨基酸片段對 VCA 入核的影響 ..................................................55 圖 9. BdRF1 對核內 VCA 聚合體型態的影響 ........................................................57 圖 10. VCA、BdRF1 及 BFRF3 會共同位在 PML-NBs.........................................59 圖 11. BFRF3 在 VCA 入核路徑中的功能示意圖 .....60 附錄 ..............61 附錄 1、皰疹病毒 HSV-1 的外鞘成熟過程 ............................................................61 附錄 2、EBV 外鞘蛋白質和皰疹病毒同源蛋白質對照表 ....................................63 參考文獻 ..........................................................................................................64 | |
dc.language.iso | zh-TW | |
dc.title | EB 病毒的 BFRF3 在 VCA 入核機制中所扮演的角色 | zh_TW |
dc.title | Role of Epstein-Barr virus BFRF3 in nuclear translocation of VCA | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉世東,羅凱尹,廖憶純,張沛鈞 | |
dc.subject.keyword | Epstein-Barr virus (EBV),VCA,BdRF1,BFRF3,oligomerization, | zh_TW |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU201901210 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-14 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 25.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。