請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7414
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇志杰(Chih-Chieh Su) | |
dc.contributor.author | Chun-Yu Lee | en |
dc.contributor.author | 李純瑜 | zh_TW |
dc.date.accessioned | 2021-05-19T17:43:10Z | - |
dc.date.available | 2021-10-24 | |
dc.date.available | 2021-05-19T17:43:10Z | - |
dc.date.copyright | 2018-10-24 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-10-17 | |
dc.identifier.citation | Chen, C.T.A., and K. Selvaraj, 2008. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan. Environmental Geology 54: 1333-1346.
Chen, H.F., P.Y. Yeh, S.R. Song, S.C. Hsu, T.N. Yang, Y. Wang, Z.Q. Chi, T.Q. Lee, M.T. Chen, C.L. Cheng, J.J. Zou, and Y.P. Chang, 2013. The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia. Journal of Asian Earth Sciences 73: 31-38. Chiang, C.S., and H.S. Yu, 2006. Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology 80 (3-4): 199-213. Choi, S.C., O.W.H. Wai, T.W.H. Choi, X.D. Li, and C.W. Tsang, 2006. Distribution of cadmium, chromium, copper, lead and zinc in marine sediments in Hong Kong waters. Environmental Geology 51: 455-461. Chung, C.H., C.F. You, and H.Y. Chu, 2009. Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems 76: 433-443. Doong, R.A., S.H. Lee, C.C. Lee, Y.C. Sun, and S.C. Wu, 2008. Characterization and composition of heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-ping River, Taiwan. Marine Pollution Bulletin 57: 846-857. Finney, B.P., and C.A. Huh, 1989. History of Metal Pollution in the Southern California Bight: An Update. Environmental Science and Technology 23: 294-303. Gao, S., T.C. Luo, B.R. Zhang, H.F. Zhang, Y.W. Han, Z.D. Zhao, and Y.K. Hu, 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta 62 (11): 1959-1975. Heim, S., and J. Schwarzbauer, 2013. Pollution history revealed by sedimentary records: a review. Environmental Chemistry Letters 11: 255-270. Honoso, T., C.C. Su, F. Siringan, A. Amano, and S.I. Onodera, 2010. Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay. Marine Pollution Bulletin 60: 780-785. Hosono, Takahiro, C.C. Su, R. Delinom, Y. Umezawa, T. Toyota, S. Kaneko, and M. Taniguchi, 2011. Decline in heavy metal contamination in marine sediments in Jakarta Bay, Indonesia due to increasing environmental regulations. Estuarine, Coastal and Shelf Science 92: 297-306. Hu, Z.C., and S. Gao, 2008. Upper crustal abundances of trace elements: A revision and update. Chemical Geology 253: 205-221. Huh, C.A., and H.Y. Chen, 1999. History of Lead Pollution Recorded in East China Sea Sediments. Marine Pollution Bulletin 38 (7): 545-549. Huh, C.A., H.L. Lin, S. Lin, and Y.W. Huang, 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76: 405-416. Hung, J.J., and C.L. Hsu, 2004. Present state and historical changes of trace metal pollution in Kaoping coastal sediments, southwestern Taiwan. Marine Pollution Bulletin 49 (11-12): 986-998. Järup, L., 2003. Hazards of heavy metal contamination. British Medical Bulletin 68 (1): 167-182. Kao S.J., and J.D. Milliman, 2008. Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events, and Human Activities. The Journal of Geology 116 (5): 431-448. Lan, C.Y., C.S. Lee, J.J.S. Shen, C.Y. Lu, S. A. Mertzman, and T.W. Wu, 2002. Nd-Sr isotopic composition and geochemistry of sediments from Taiwan and their implications. Western Pacific Earth Sciences 2 (2): 205-222. Li, Y.H., 1976. Denudation of Taiwan Island since the Pliocene Epoch. Geology 4 (2): 105-107. Liu, J.T., K.J. Liu, and J.C. Huang, 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology 181: 357-386 Lynn, D.C., and E. Bonatti, 1965. Mobility of manganese in diagenesis of deep-sea sediments. Marine Geology 3 (6): 457-474. Milliman, J.D., and J.P.M. Syvitski, 1992. Geomorphic/ Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology 100 (5): 525-544. Nagajyoti, P.C., K.D. Lee, and T.V.M. Sreekanth, 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8 (3): 199-216. Ng, A., and C.C. Patterson, 1982. Changes of lead and barium with time in California off-shore basin sediments. Geochimica et Connochimica Acta 46: 2307-2321. Palanques, A., J.A. Sanchez-Cabeza, P. Masqué, and L. León, 1998. Historical record of heavy metals in a highly contaminated Mediterranean deposit: The Besòs prodelta. Marine Chemistry 61: 209-217. Salomons, W., and U. Fornster, 1984. Metals in the Hydrocycle. Springer-Verlag, New York 349pp. Selvaraj, K., and C.T.A. Chen, 2006. Moderate Chemical Weathering of Subtropical Taiwan: Constraints from Solid‐Phase Geochemistry of Sediments and Sedimentary Rocks. The Journal of Geology 114 (1): 101-116. Su, C.C., S.T. Hsu, H.H. Hsu, J.Y. Lin, and J.J. Dong, 2018. Sedimentological characteristics and seafloor failure offshore SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences Journal 29: 65-76. Taylor, S.R., 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et CosmochimicaActa 28: 1273-1285. Turekian, K.K., and K.H. Wedepohl, 1961. Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin 72: 175-192. Yu, H.S., and G.S. Song, 1993. Submarine physiography around Taiwan and its relation to tectonic setting. Journal of the geological society of china 36: 139-156. Yu, H.S., and Z.Y. Huang, 2006. Intraslope Basin, Seismic Facies and Sedimentary Processes in the Kaoping Slope, Offshore Southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences Journal 17 (4): 659-677. Yu, H.S., C.S. Chiang, and S.M. Shen, 2009. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems 76: 369-382. Zhang, J., and C.L. Liu, 2002. Riverine composition and estuarine geochemistry of particulate metals in China - Weathering features, anthropogenic impact and chemical fluxes. Estuarine Coastal and Shelf Science 54 (6): 1051-1070. Zwolsman, John J.G., G.W. Berger, and G.T.M. Van Eck, 1993. Sediment accumulation rates, historical input, post-depositional mobility and retention of major elements and trace metals in salt marsh sediments of the Scheldt estuary, SW Netherlands. Marine Chemistry 44: 73-94. Water Resource Agency Hydrological Yearbook, 2017. E-book, Water Resource Agency, Ministry of Economic Affair, Taiwan, R.O.C. 林靜怡、董家鈞、許懷後、鄭文彬、蘇志杰,2016。台灣西南海域天然氣水合物賦存區海床穩定性的基礎研究(1/3)。第二期能源國家型科技計畫期末成果效益報告,地熱與天然氣水合物主軸中心。 林佳緯, 2006。台灣西南海域表層沉積物金屬與顆粒組成空間分佈與控制因子。國立台灣大學海洋研究所碩士論文, 51頁。 蔡帛軒, 2014。臺灣西南海域極端事件引發海底地質災害對有機碳埋藏的影響。國立台灣大學海洋研究所碩士論文, 71頁。 徐聖婷, 2015。臺灣西南海域現代沉積物之傳輸途徑與機制。國立台灣大學海洋研究所碩士論文, 67頁。 楊嘉豪, 2002。東海陸棚沈積物中金屬元素之垂直分佈研究。國立台灣大學海洋研究所碩士論文, 73頁。 鄭屹雅, 2012。臺灣西南海域沉積物重力流引發之海底電纜斷裂事件。國立台灣大學海洋研究所碩士論文, 98頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7414 | - |
dc.description.abstract | 台灣位於活動型大陸邊緣,板塊擠壓造山使其發展出眾多高山型小河,這些河流快速侵蝕地表挾帶大量陸源沈積物傳輸至海洋。自1970年代起,台灣工業迅速發展,1980年代開始,台灣重金屬汙染問題不斷浮現,甚至擴及沿岸地區,顯示人為活動已經對臺灣周遭環境造成一定程度的影響。在此地質環境和人為活動的交互作用下,這些流經高度工業發展和人口居住密集區域的河川,勢必會將這些經濟發展下對於環境造成負面影響的產物帶進海洋環境當中,此研究目的於探討這些人為汙染物於海洋沈積物中的堆積歷史紀錄,以了解其傳輸之控制機制、來源及其擴散影響的範圍。
高屏溪為台灣流域面積最大的一條河流,因流經人口居住密集及工業高度發展之地區,與其他世界大河相比,擁有顯著高濃度的顆粒態和溶解態金屬。高屏海底峽谷位於台灣西南海域,其峽谷頭部幾乎與高屏溪連接,為高屏溪帶來大量陸源物質往深海傳輸的主要通道。本研究主要利用鉛-210定年、粒徑分析、地化分析(分析元素包括Zn, Cr, Pb, Co, Ni, Cu, Cd, Fe, Mn, Al, Ti, Mg, K)等方法,分析在西南海域周邊採集之岩芯,並以其金屬對Al之比值與自然環境(平均上部地殼、平均臺灣沈積岩、揚子陸塊及平均頁岩)背景值相比,以分辨沈積物中微量金屬之來源。根據岩心採樣位置,可劃分為三大類:(I)高屏峽谷上段兩側陸坡站位;(II)高屏峽谷下段深海站位;(III)澎湖峽谷頭部異源站位。 本研究之結果發現在陸棚外之區域找不到顯著的人為汙染訊號,陸棚外大部分重金屬呈現出相對穩定的時間分佈,其和Al的比值皆接近或低於自然背景。然而,於峽谷上段陸坡站位的表層沈積物中記錄到輕微的Pb富集及其隨時間顯著增加的趨勢,但於深海站並未紀錄到此趨勢,顯示陸源的汙染訊號主要可以到達高屏陸坡。此外,雖與自然背景並無明顯差異,但在高屏陸坡上這些記錄到Pb隨某段時間劇烈增加的站位中,皆可清楚描繪出台灣工業發展開始的時期(1970年代)。除了微量金屬的人為輸入之外,也發現自然災害(地震,颱風等)亦會加速海洋環境中微量金屬的累積。在高屏陸坡和深海這兩個沈積環境中,兩者擁有相當的微量金屬累積質量和相對一致的Ti / Al莫耳比,顯示這些由高屏峽谷傳輸之沈積物可以越過陸棚,除了一部分堆積至陸坡,另外也運送相當大量的沈積物至深海中沈積。雖然沈積物於此研究區跨棚傳輸之特性,使深海成為陸源沈積物的重要匯區,但在本研究的深海站位並未發現微量金屬的污染記錄,顯示這些陸源之污染信號可以在進一步向遠洋傳輸的過程中被稀釋,揭示這些汙然源的微量金屬對於深海的影響是微不足道的。 | zh_TW |
dc.description.abstract | Rapid economic and industrial development over the past five decades in Taiwan has caused the expense of environment. Heavy metals pollution issue has gradually emerged after the 1980s and the contaminated area has extended to the coastal environment. With the tectonic setting and climatic condition in Taiwan, a considerable amount of pollutants could be carried into the marine environment. The aim of this study is to investigate the distribution and transportation of heavy metals through sedimentary records offshore southwestern Taiwan.
Gaoping River (GPR) is the largest river in southern Taiwan and stands out of other major world rivers for its high concentrations of dissolved and particulate metals. Gaoping Submarine Canyon (GPSC) has been proven to be the major pathway for the transportation of terrestrial materials discharged from GPR into the deep sea. In this study, 210Pb dating, grain size and geochemical analyses (Zn, Cr, Pb, Co, Ni, Cu, Cd, Fe, Mn, Al, Ti, Mg, K) were applied to the sediment cores sampled in three different sedimentary environments around the GPSC: (I) Gaoping Slope sites, (II) Deep sea sites at lower reach of GPSC, and (III) Penghu Submarine Canyon site. Since trace metals could be derived from natural or anthropogenic sources, reference background materials (UCC, ACST, UC-YC and Average Shale) are compared to distinguish the source of the trace metals. Compared to previous studies conducted in the nearshore regions, pollution signals are hardly to be found in our further seaward sites (Gaoping Slope & deep sea), most of the measured trace metals display a stable temporal distribution with a level near or under the natural background. However, slight enrichment of Pb and its sharp increase were still recorded within the surface sediments at the Gaoping Slope sites while the records are absent in the deep sea. Moreover, the Gaoping Slope cores which have conformably recorded the pollution of Pb can even clearly illustrate the onset of the industrial development in Taiwan despite their subtle difference from the natural background. Other than the anthropogenic input of the trace metals, natural hazards (earthquakes, typhoons, etc.) are also found to accelerate the accumulation of trace metals in the marine environment. The comparable amount of cumulative mass of the trace metals between Gaoping slope and the deep sea sites and the relatively consistent Ti/Al molar ratio between these two sedimentological regimes, all suggesting that the sediments discharged from GPR could cross the narrow shelf and made a considerable amount to transport and accumulate in the deep sea. Though deep sea can act as an important sink for the terrestrial materials due to the cross-shelf transport, pollution record was not found in the deep sea sites as the pollution signals can be largely diluted during the further seaward transport, implying the pollution in the deep sea is insignificant in the study area. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:43:10Z (GMT). No. of bitstreams: 1 ntu-107-R05241310-1.pdf: 8104356 bytes, checksum: dfdc956e53b58fccc43c37acc10b1d0a (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Background 2 1.3 Study Area 3 1.3.1 Gaoping River (GPR) 3 1.3.2 Gaoping Shelf 4 1.3.3 Gaoping slope 5 1.3.4 Gaoping Submarine Canyon (GPSC) 5 1.3.5 Penghu Submarine Canyon 6 1.4 Study Aims 7 Chapter 2 Sampling & Methods 12 2.1 Sampling 12 2.1.1 Sampling Sites 12 2.1.2 Sampling Method 12 2.2 Sample Treatment 15 2.3 Analytical Method 16 2.3.1 Water Content 16 2.3.2 X-Radiography 17 2.3.3 210Pb Geochronology 18 2.3.4 Grain Size Analysis 24 2.3.5 Geochemical Analysis 27 Chapter 3 Results and Discussions 34 3.1 Sedimentary Properties 34 3.1.1 Gaoping Continental Slope Site: S2, S6, S1 and B4G 34 3.1.2 Deep Sea Site: MT6 and MT7 36 3.1.3 Penghu Submarine Canyon Site: PL02 39 3.2 Major Element Ratios 39 3.2.1 Reference Element (Al) 39 3.2.2 Reference Backgrounds 42 3.2.3 Ti/Al Molar Ratio 50 3.3 Vertical Distribution of the Metals 55 3.3.1 S2 (Gaoping Slope Site) 55 3.3.2 S6 (Gaoping Slope Site) 56 3.3.3 S1 (Gaoping Slope Site) 57 3.3.4 B4G (Gaoping Slope Site) 59 3.3.5 PL02 (Penghu Submarine Canyon Site) 60 3.3.6 MT6 (Deep Sea Site) 61 3.3.7 MT7 (Deep Sea Site) 63 3.4 Source of the Elements 64 3.5 Enrichment of the Trace Metals 69 3.5.1 Mn 69 3.5.2 Pb 73 3.6 Cumulative Mass of the Trace Metals 77 3.7 Lead Pollution in Aquatic Sediments in a global Comparison 79 Chapter 4 Conclusion 83 REFERENCE 85 APPENDIX 90 | |
dc.language.iso | en | |
dc.title | 台灣西南海域微量金屬沈積歷史 | zh_TW |
dc.title | Historical Record of Trace Metals offshore Southwestern Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 溫良碩(Liang-Saw Wen),林殷田(In-Tian Lin) | |
dc.subject.keyword | 臺灣西南海域,高屏海底峽谷,汙染歷史,自然災害,傳輸,深海, | zh_TW |
dc.subject.keyword | Gaoping Submarine Canyon,Southwestern Taiwan,Trace Metals,Pollution Record,Natural Hazards,Transport,Deep Ocean, | en |
dc.relation.page | 96 | |
dc.identifier.doi | 10.6342/NTU201804210 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-10-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 7.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。