請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74134完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹穎雯 | |
| dc.contributor.author | Li-Yang Chen | en |
| dc.contributor.author | 陳力揚 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:21:18Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | [1] International Atomic Energy Agency (IAEA), “Classification of radioactive waste: general safety guide, IAEA Safety Standards Series No GSG-1”, 2009.
[2] SKB, “International perspective on repositories for low level waste”, SKB R-11-16, Svensk Kärnbränslehantering AB, 2011. [3] Teens網路教育園區&財團法人清華網路文教基金會-清蔚園網站,「放射性廢料的處理」,2004。 [4] 行政院原子能委員會,放射性待處理物料管理局,「低放射性廢棄物最終處置及其設施安全管理規則」,2010。 [5] 劉隆運,「低放射性廢棄物最終處置場回填材料之配方與工程特性研究」,碩士論文,中央大學土木工程學研究所,2010。 [6] 中興工程顧問股份有限公司,「低放射性廢棄物最終處置技術可行性評估報告」,2013。 [7] Komine, H., “Predicting hydraulic conductivity of sand–bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes”, Engineering Geology Vol. 114, pp. 123–134, 2010. [8] 曾漢湘,「赴韓國水力核能電力公司研討低放處置技術、參訪核能工程與技術機構及慶州低放處置場址」,行政院原子能委員會放射性物料管理局,2009。 [9] Lee, Y.R., “Experience of siting process for radwaste disposal Facility in Korea”, Korea Radioactive Waste Management Corporation, 2011. [10] South Korea's Ministry of Education, ”Korean fourth national report under the joint convention on the safety of spent fuel management and on the safety of radioactive waste management”, Science and Technology, 2011. [11] Koch, D., “European Bentonites as alternatives to MX-80”, Science & Technology Series, Vol. 334, pp.23–30, 2008. [12] 季桂娟、張培萍、姜桂蘭,「膨潤土加工與應用第二版」,化學工業出版社(北京),2013。 [13] Komine, H., “Simplified evaluation for swelling characteristics of bentonites”, Engineering Geology, Vol. 71, pp.265–279, 2004. [14] 台灣電力公司,「我國用過核燃料長程處置:全程工作規劃書」,2000。 [15] IAEA, “Deep Underground Disposal of Radioactive Waste:Near-Field Effects”, Technical Reports Series, No. 251, 1985. [16] 莊文壽、洪錦雄、董家寶,「深地層處置技術之研究」,核研季刊第37期,2000。 [17] IAEA, “The principles of radioactive waste management”, IAEA Safety Series No. 111-F, International Atomic Energy Agency, Vienna, 1995. [18] IAEA, “Technical considerations in the design of near surface disposal facilities for radioactive waste”, IAEA-Tecdoc-1256, International Atomic Energy Agency, Vienna, 2001. [19] 王欣婷,「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程學研究所,2003。 [20] 黃偉慶等,「放射性廢棄物處置場回填材料之工程性質」,核子科學,第三十八卷,第二期,2001。 [21] Yong, R.N., Benno, P.W., “Soil Properties and Behavior”, 1975. [22] Komine, H., Ogata, N., “A trial design of buffer materials from the viewpoint of self-sealing”, Proceeding of Radioactive Waste Management and Environmental Remediation, ASME., 1999. [23] 許俊男,「在模擬地下水中黏土礦物對鍶銫核種的吸附機制研究」,放射性物料管理局八十五年度專題研究計劃期末報告,1996。 [24] Ahonen, L., “Quality Assurance of the Bentonite Material”, Posiva Oy, May 2008. [25] Mishra, A.K., Ohtsubo, M., Li, L., Higashi, T., “Controlling factors of the swelling of various bentonites and their correlations with the hydraulic conductivity of soil-bentonite mixtures”, Applied Clay Science, Vol. 52, pp. 78–84, 2011. [26] Liu, L., Neretnieks, I., Moreno, L., “Permeability and expansibility of natural bentonite MX-80 in distilled water”, Physics and Chemistry of the Earth Vol. 36, pp. 1783–1791, 2011. [27] Cho, W.J., Lee, J.O., Kwon, S., “An analysis of the factors affecting the hydraulic conductivity and swelling pressure of kyungju ca-bentonite for use as a clay-based sealing material for a high-level waste repository”, Nuclear engineering and technology, Vol. 44, No.1, 2011. [28] Cui, S.L., Zhang, H.Y., Zhang, M., “Swelling characteristics of compacted GMZ bentonite–sand mixtures as a buffer/backfill material in China”, Engineering Geology, Vol. 141–142, pp. 65–73, 2012. [29] 郭明峰,「皂土-碎石混合物之壓實性質」,碩士論文,國立中央大學土木工程學研究所,2004。 [30] 陳文泉,「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,碩士論文,國立中央大學土木工程學研究所,2004。 [31] Shirazi, S.M., Kazama, H., Salman, F.A., Othman, F., and Akib, S., “Permeability and swelling characteristics of bentonite”, International Journal of the Physical Sciences, Vol. 5(11), pp. 1647-1659, 2010. [32] Wang, Q., Tang, A.M., Cui, Y.J., Delage, P., Gatmiri, B., “Experimental study on the swelling behaviour of bentonite/claystone mixture”, Engineering Geology, Vol. 124, pp. 59-66, 2012. [33] Karnland, O., “Mineralogy and sealing properties of various bentonites and smectite-rich clay materials”, Swedish Nuclear Fuel and Waste Management Co., December 2006. [34] 沈茂松,「實用土壤力學實驗,增訂第七版」,文笙書局,1988。 [35] 吳冠漢,「緩衝材料於近場環境下之體積穩定性研究」,碩士論文,國立中央大學土木工程學研究所,2004。 [36] 王俊堯,「低放射性廢棄物最終處置回填材料於近場環境下之長期穩定性研究」,碩士論文,國立中央大學土木工程學研究所,2011。 [37] Bogisch, K., “Determination of the Methylene Blue Adsorption of Bentonites by“Tüpfel” Test”, 2011. [38] Pusch, R., “Use of bentonite for isolation of radioactive waste products”, Clay minerals, Vol. 27, pp. 353-361, 1992 . [39] 台灣電力公司核能看透透-認識核廢料,「低放射性廢棄物的來源」。 [40] mindat.org - the mineral and locality database, http://www.mindat.org [41] 施國欽,「大地工程學(一)土壤力學篇,第五版」,文笙書局,2005。 [42] Tai Sasaki Japan Nuclear Fuel Limited, “Safety Design and Evaluation Methodology of Tunnel Repository for Low Level Radwaste Disposal in Japan”, 2008. [43] International Atomic Energy Agency (IAEA), “The principles of radioactive waste management, IAEA Safety Series No. 111-F, International Atomic Energy Agency”, 1995. [44] International Atomic Energy Agency (IAEA), “Technical considerations in the design of near surface disposal facilities for radioactive waste, IAEA-Tecdoc-1256, International Atomic Energy Agency”, 2001. [45] 行政院原子能委員會網站,高放射性廢棄物最終處置,2019。 [46] 行政院原子能委員會網站,低放射性廢棄物最終處置,2019。 [47] Skogberg, M. and Ingvarsson, R., Project website. Available fromhttp://www.euronuclear.org/events/topseal/presentations/PP-Session-III-Skogsberg.pdf., 2011 [48] Hu-Yuan Zhang∗, Su-Li Cui, Ming Zhang, Ling-Yan Jia, “Swelling behaviors of GMZ bentonite–sand mixtures inundated in NaCl–Na2SO4 solutions”, 2011 [49] Hideo Komine, Kazuya Yasuhara, Satoshi Murakami, “Swelling characteristics of bentonite in artificial seawater”, 2009 [50] Zhu Chun-Ming, YeWei-Mina, Chen Yong-Gui, Chen Baoa, Cui Yu-Juna, “Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite”, 2013 [51] Michael H. Bradbury*, Bart Baeyens, “Porewater chemistry in compacted re-saturated MX-80 bentonite”, 2003 [52] 鄭百宏,「以膨潤土製作緩衝回填材料之性能評估」,碩士論文,國立台灣大學土木工程學研究所,2014。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74134 | - |
| dc.description.abstract | 現今世界上許多國家皆享受著核能發電與原子能應用帶來的效益,但隨著科技的進步與便利,處理隨之產生的放射性廢棄物與輻射汙染便成為了重要的課題。
目前各國對於放射性廢棄物處置皆採取「多重障壁」概念, 利用堅固的天然地形,搭配人造工程障壁組成的多層防護措施來隔絕放射性廢棄物與外界環境,讓其輻射強度在長時間下能減弱至無害的範圍內。然而考慮到放射性廢棄物最終處置場之設計可能位於靠海或海島地區,例如台灣的金門縣烏坵鄉,因此有可能發生海水入侵的狀況,本研究將探討工程障壁中之緩衝回填材料在海水情況下之性能變化。 本研究在不考慮粒料添加之情況,選用日本進口之KUNIGEL-V1膨潤土與美國進口之MX-80膨潤土作為緩衝回填材料,藉由土壤基本性質試驗、單向度膨脹率試驗、束制膨脹壓力試驗、水力傳導度試驗來探討兩種膨潤土在不同單位重下,純水與海水環境之各項性能。結果發現,海水環境下,鈉系膨潤土之膨脹率表現會大幅折減,然而膨脹壓力之折減較不嚴重。綜合比較後,MX-80有較好之膨脹性能與阻水性能,但兩種膨潤土在國外規範中皆是表現良好的緩衝回填材料。除此之外,透過試驗結果建立兩種膨潤土之性能預測式,期望能建立資料庫並提供後續工程界設計參考之依據。 | zh_TW |
| dc.description.abstract | Nowadays, many countries in the world enjoy the benefits brought by nuclear power generation and atomic energy applications. However, with the advancement and convenience of technology, it is an important issue to deal with the resulting radioactive waste and radiation pollution.
At present, countries adopt the concept of “multiple barriers” for the disposal of radioactive waste. They use strong natural terrain and multi-layered protective measures composed of artificial engineering barriers to isolate radioactive waste from the external environment, so that its radiation intensity can be reduced to a harmless range. However, considering that the design of the final disposal site for radioactive waste may be located in coastal or island areas, such as Wuqiu, Taiwan, therefore, seawater intrusion may occur. This study will explore the performance changes in buffer and backfill material used in the engineering barrier in seawater conditions. In this study, KUNIGEL-V1 bentonite imported from Japan and MX-80 bentonite imported from the United States were used as buffer and backfill materials without considering the addition of aggregate. Tests for material characteristics, swelling rate, swelling pressure and hydraulic conductivity were conducted to investigate the properties of two bentonites under different unit weights, pure water and seawater. It was found that the swelling rate of sodium bentonite was greatly reduced in seawater environment, but the reduction of expansion pressure was less serious. After comprehensive comparison, MX-80 has better expansion performance and water blocking performance, but both bentonites are good buffer and backfill materials in foreign specifications. In addition, through the test results to establish two kinds of bentonite performance prediction formula, it is expected to establish a database and provide a basis for subsequent engineering design reference. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:21:18Z (GMT). No. of bitstreams: 1 ntu-108-R06521231-1.pdf: 11434965 bytes, checksum: 76c310124b3462485724f6432aebe344 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 IX 表目錄 XV 照片目錄 XVII 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程圖 2 第2章 文獻回顧 4 2.1 放射性廢棄物分類與處置 4 2.1.1 前言 4 2.1.2 高放射性廢棄物來源與處置方法 5 2.1.3 低放射性廢棄物來源與處置方法 6 2.1.4 多重障壁概念介紹 7 2.1.5 國外最終處置場案例介紹 10 1.1.1.1 日本案例 10 2.1.5.2 瑞典案例 14 2.2 膨潤土礦物基本介紹 18 2.2.1 膨潤土簡介 18 2.2.2 蒙脫石基本構造 19 2.2.3 蒙脫石基本特徵 20 2.2.4 蒙脫石之阻水性能 20 2.2.5 蒙脫石礦物與水之作用 21 2.2.6 膨潤土於緩衝回填材料中之回脹行為 22 2.3 障壁中緩衝材料與回填材料性能評估 23 2.3.1 前言 23 2.3.2 緩衝回填材料性能需求 24 2.3.3 國外對於緩衝回填材料性能需求之規定 27 2.4 影響緩衝回填材料性能之因素 32 2.4.1 阿太堡限度 32 2.4.2 膨潤土中蒙脫石含量及蒙脫石表面可交換陽離子類型 34 2.4.3 膨潤土含量與單位重 40 2.4.4 膨潤土含水量 46 2.4.5 緩衝回填材料於非純水環境之影響 47 2.4.6 雙電層理論Diffuse Double-Layer(DDL) 52 2.5 國內外對於緩衝回填材料之分析方法及性能試驗結果 55 2.5.1 基本性質試驗 55 2.5.2 單向度膨脹率與最大膨脹率之分析方法 56 2.5.3 束制膨脹壓力 58 2.5.4 水力傳導度 59 2.5.5 緩衝回填材料膨脹性能簡化評估 61 第3章 實驗計畫 65 3.1 性能測試試驗內容與架構 65 3.2 試驗材料 66 3.2.1 膨潤土 66 3.2.1.1日本山形縣KUNIGEL-V1 66 3.2.1.1美國懷俄明州MX-80 67 3.3 膨潤土基本性質試驗 67 3.3.1 阿太堡限度試驗 67 3.3.2 膨潤土活性試驗 68 3.3.3 膨潤土自然含水量試驗 68 3.3.4 膨潤土比重試驗 68 3.3.5 化學成分試驗 68 3.3.6 膨潤土膨脹指數(Free Swell)試驗 69 3.3.7 膨潤土中蒙脫石礦物含量試驗 69 3.4 試體製程與材料處理 71 3.4.1 配比設計 71 3.4.2 膨潤土前處理 72 3.4.3 試體製作 72 3.5 緩衝回填材之性能試驗 74 3.5.1 單向度膨脹率試驗 74 3.5.2 束制膨脹壓力試驗 76 3.5.3 水力傳導度試驗 78 第4章 試驗結果與討論 81 4.1 膨潤土性能試驗結果 81 4.1.1 膨潤土基本性質試驗結果 81 4.1.2 化學成分試驗結果 81 4.1.3 膨潤土膨脹指數(Free Swell)試驗結果 82 4.1.4 膨潤土中蒙脫石含量試驗結果 83 4.2 單向度膨脹率試驗結果 84 4.2.1 KUNIGEL-V1(K)單向度膨脹率試驗結果 86 4.2.1.1 純水環境下 86 4.2.1.2 海水環境下 89 4.2.2 MX-80(M)單向度膨脹率試驗結果 93 4.2.2.1純水環境下 93 4.2.2.2海水環境下 96 4.2.3 單向度加載膨脹率試驗結果 100 4.2.4 單向度膨脹率綜合比較 101 4.3 束制膨脹壓力試驗結果 104 4.3.1 KUNIGEL-V1(K)束制膨脹壓力試驗結果 104 4.3.1.1 純水環境下 104 4.3.1.2 海水環境下 108 4.3.2 MX-80(M)束制膨脹壓力試驗結果 112 4.3.2.1 純水環境下 112 4.3.2.2 海水環境下 115 4.3.3 束制膨脹壓力試驗綜合比較 119 4.4 水力傳導度試驗結果 122 4.4.1 KUNIGEL-V1(K)水力傳導度 123 4.4.1.1 純水環境下 123 4.4.1.2 海水環境下 124 4.4.2 MX-80(M)水力傳導度 125 4.4.2.1 純水環境下 126 4.4.2.2 海水環境下 127 4.4.3 水力傳導度試驗綜合比較 128 4.5 緩衝回填材膨脹特性簡化評估 132 4.5.1 參數一覽表 134 4.5.2 預測公式回歸結果與比較 135 4.5.3 範例 137 第5章 結論與建議 142 5.1 結論 142 5.2 建議 144 參考文獻 146 | |
| dc.language.iso | zh-TW | |
| dc.subject | 預測式 | zh_TW |
| dc.subject | 水力傳導度 | zh_TW |
| dc.subject | 膨脹壓力 | zh_TW |
| dc.subject | 膨脹率 | zh_TW |
| dc.subject | 海水 | zh_TW |
| dc.subject | 放射性廢棄物 | zh_TW |
| dc.subject | 緩衝回填材料 | zh_TW |
| dc.subject | prediction formula | en |
| dc.subject | buffer and backfill material | en |
| dc.subject | artificial seawater | en |
| dc.subject | swelling rate | en |
| dc.subject | swelling pressure | en |
| dc.subject | hydraulic conductivity | en |
| dc.subject | radioactive waste | en |
| dc.title | 膨潤土於人工海水環境下之緩衝回填材料性能比較 | zh_TW |
| dc.title | Performance Comparison of Buffer and Backfill Material Made of Bentonite in Artificial Seawater | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖文正,楊仲家 | |
| dc.subject.keyword | 放射性廢棄物,緩衝回填材料,海水,膨脹率,膨脹壓力,水力傳導度,預測式, | zh_TW |
| dc.subject.keyword | radioactive waste,buffer and backfill material,artificial seawater,swelling rate,swelling pressure,hydraulic conductivity,prediction formula, | en |
| dc.relation.page | 150 | |
| dc.identifier.doi | 10.6342/NTU201903228 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 11.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
