請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7411完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭錦樺 | |
| dc.contributor.author | Huai-Hsuan Chiu | en |
| dc.contributor.author | 邱懷萱 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:43:07Z | - |
| dc.date.available | 2024-03-05 | |
| dc.date.available | 2021-05-19T17:43:07Z | - |
| dc.date.copyright | 2019-03-05 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-10-31 | |
| dc.identifier.citation | Chapter 5. References
1. Hjartaker, A.; Aagnes, B.; Robsahm, T. E.; Langseth, H.; Bray, F.; Larsen, I. K., Subsite-specific dietary risk factors for colorectal cancer: a review of cohort studies. J Oncol 2013, 2013, 703854. 2. Gagnon, J.; Levesque, E.; Borduas, F.; Chiquette, J.; Diorio, C.; Duchesne, N.; Dumais, M.; Eloy, L.; Foulkes, W.; Gervais, N.; Lalonde, L.; L'Esperance, B.; Meterissian, S.; Provencher, L.; Richard, J.; Savard, C.; Trop, I.; Wong, N.; Knoppers, B. M.; Simard, J.; Canc, C. A. C. B., Recommendations on breast cancer screening and prevention in the context of implementing risk stratification: impending changes to current policies. Curr Oncol 2016, 23 (6), E615-E625. 3. Ma, X.; Yang, Y.; Li, H. L.; Zheng, W.; Gao, J.; Zhang, W.; Yang, G.; Shu, X. O.; Xiang, Y. B., Dietary trace element intake and liver cancer risk: Results from two population-based cohorts in China. Int. J. Cancer 2017, 140 (5), 1050-1059. 4. de Rooij, M.; Hamoen, E. H. J.; Futterer, J. J.; Barentsz, J. O.; Rovers, M. M., Accuracy of Multiparametric MRI for Prostate Cancer Detection: A Meta-Analysis. Am J Roentgenol 2014, 202 (2), 343-351. 5. Rastinehad, A. R.; Turkbey, B.; Salami, S. S.; Yaskiv, O.; George, A. K.; Fakhoury, M.; Beecher, K.; Vira, M. A.; Kavoussi, L. R.; Siegel, D. N.; Villani, R.; Ben-Levi, E., Improving Detection of Clinically Significant Prostate Cancer: Magnetic Resonance Imaging/Transrectal Ultrasound Fusion Guided Prostate Biopsy. J Urology 2014, 191 (6), 1749-1754. 6. Ng, E. K. O.; Li, R. F. N.; Shin, V. Y.; Jin, H. C.; Leung, C. P. H.; Ma, E. S. K.; Pang, R.; Chua, D.; Chu, K. M.; Law, W. L.; Law, S. Y. K.; Poon, R. T. P.; Kwong, A., Circulating microRNAs as Specific Biomarkers for Breast Cancer Detection. Plos One 2013, 8 (1). 7. Kuhl, C. K.; Schrading, S.; Strobel, K.; Schild, H. H.; Hilgers, R. D.; Bieling, H. B., Abbreviated Breast Magnetic Resonance Imaging (MRI): First Postcontrast Subtracted Images and Maximum-Intensity Projection-A Novel Approach to Breast Cancer Screening With MRI. J Clin Oncol 2014, 32 (22), 2304-U176. 8. Wu, P. F.; Lin, C. H.; Kuo, C. H.; Chen, W. W.; Yeh, D. C.; Liao, H. W.; Huang, S. M.; Cheng, A. L.; Lu, Y. S., A pilot study of bevacizumab combined with etoposide and cisplatin in breast cancer patients with leptomeningeal carcinomatosis. Bmc Cancer 2015, 15. 9. van Meir, H.; Kenter, G. G.; Burggraaf, J.; Kroep, J. R.; Welters, M. J. P.; Melief, C. J. M.; van der Burg, S. H.; van Poelgeest, M. I. E., The Need for Improvement of the Treatment of Advanced and Metastatic Cervical Cancer, the Rationale for Combined Chemo-Immunotherapy. Anti-Cancer Agent Me 2014, 14 (2), 190-203. 10. Nickoloff, J. A., Improving cancer therapy by combining cell biological, physical, and molecular targeting strategies. Chinese J Cancer Res 2013, 25 (1), 7-9. 11. La Vecchia, C.; Rota, M.; Malvezzi, M.; Negri, E., Potential for improvement in cancer management: reducing mortality in the European Union. Oncologist 2015, 20 (5), 495-8. 12. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer Statistics, 2015. Ca-Cancer J Clin 2015, 65 (1), 5-29. 13. Hashim, D.; Boffetta, P.; La Vecchia, C.; Rota, M.; Bertuccio, P.; Malvezzi, M.; Negri, E., The global decrease in cancer mortality: trends and disparities. Ann Oncol 2016, 27 (5), 926-933. 14. Miller, K. D.; Siegel, R. L.; Lin, C. C.; Mariotto, A. B.; Kramer, J. L.; Rowland, J. H.; Stein, K. D.; Alteri, R.; Jemal, A., Cancer treatment and survivorship statistics, 2016. Ca-Cancer J Clin 2016, 66 (4), 271-289. 15. Wardle, J.; Robb, K.; Vernon, S.; Waller, J., Screening for Prevention and Early Diagnosis of Cancer. Am Psychol 2015, 70 (2), 119-133. 16. Strimbu, K.; Tavel, J. A., What are biomarkers? Curr Opin Hiv Aids 2010, 5 (6), 463-466. 17. Ziegler, A.; Koch, A.; Krockenberger, K.; Grosshennig, A., Personalized medicine using DNA biomarkers: a review. Hum Genet 2012, 131 (10), 1627-38. 18. Vargas, A. J.; Harris, C. C., Biomarker development in the precision medicine era: lung cancer as a case study. Nat Rev Cancer 2016, 16 (8), 525-37. 19. Gharwan, H.; Groninger, H., Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol 2016, 13 (4), 209-227. 20. Morrissey, K. M.; Yuraszeck, T. M.; Li, C. C.; Zhang, Y.; Kasichayanula, S., Immunotherapy and Novel Combinations in Oncology: Current Landscape, Challenges, and Opportunities. Cts-Clin Transl Sci 2016, 9 (2), 89-104. 21. Clegg, L. X.; Reichman, M. E.; Miller, B. A.; Hankey, B. F.; Singh, G. K.; Lin, Y. D.; Goodman, M. T.; Lynch, C. F.; Schwartz, S. M.; Chen, V. W.; Bernstein, L.; Gomez, S. L.; Graff, J. J.; Lin, C. C.; Johnson, N. J.; Edwards, B. K., Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. Cancer Cause Control 2009, 20 (4), 417-435. 22. DeSantis, C.; Siegel, R.; Bandi, P.; Jemal, A., Breast cancer statistics, 2011. Ca-Cancer J Clin 2011, 61 (6), 409-418. 23. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015, 136 (5), E359-86. 24. Rossi, S.; Cinini, C.; Dipietro, C.; Lombardi, C. P.; Crucitti, A.; Bellantone, R.; Crucitti, F., Diagnostic Delay in Breast-Cancer - Correlation with Disease Stage and Prognosis. Tumori 1990, 76 (6), 559-562. 25. Nover, A. B.; Jagtap, S.; Anjum, W.; Yegingil, H.; Shih, W. Y.; Shih, W. H.; Brooks, A. D., Modern breast cancer detection: a technological review. Int J Biomed Imaging 2009, 2009, 902326. 26. Iqbal, J.; Ginsburg, O.; Rochon, P. A.; Sun, P.; Narod, S. A., Differences in Breast Cancer Stage at Diagnosis and Cancer-Specific Survival by Race and Ethnicity in the United States. Jama-J Am Med Assoc 2015, 313 (2), 165-173. 27. Robinson, E.; Mohilever, J.; Borovik, R., Factors Affecting Delay in Diagnosis of Breast-Cancer - Relationship of Delay to Stage of Disease. Israel J Med Sci 1986, 22 (5), 333-338. 28. Berg, W. A., Current Status of Supplemental Screening in Dense Breasts. J Clin Oncol 2016, 34 (16), 1840-+. 29. Gierach, G. L.; Ichikawa, L.; Kerlikowske, K.; Brinton, L. A.; Farhat, G. N.; Vacek, P. M.; Weaver, D. L.; Schairer, C.; Taplin, S. H.; Sherman, M. E., Relationship Between Mammographic Density and Breast Cancer Death in the Breast Cancer Surveillance Consortium. J Natl Cancer I 2012, 104 (16), 1218-1227. 30. Brown, P. O.; Botstein, D., Exploring the new world of the genome with DNA microarrays. Nat Genet 1999, 21, 33-37. 31. Eckhart, A. D.; Beebe, K.; Milburn, M., Metabolomics as a Key Integrator for 'Omic' Advancement of Personalized Medicine and Future Therapies. Cts-Clin Transl Sci 2012, 5 (3), 285-288. 32. Wulfkuhle, J.; Espina, V.; Liotta, L.; Petricoin, E., Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur J Cancer 2004, 40 (17), 2623-2632. 33. Nicholson, J. K.; Lindon, J. C.; Holmes, E., 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29 (11), 1181-1189. 34. Woo, H. M.; Kim, K. M.; Choi, M. H.; Jung, B. H.; Lee, J.; Kong, G.; Nam, S. J.; Kim, S.; Bai, S. W.; Chung, B. C., Mass spectrometry based metabolomic approaches in urinary biomarker study of women's cancers. Clin Chim Acta 2009, 400 (1-2), 63-69. 35. Putluri, N.; Shojaie, A.; Vasu, V. T.; Vareed, S. K.; Nalluri, S.; Putluri, V.; Thangjam, G. S.; Panzitt, K.; Tallman, C. T.; Butler, C.; Sana, T. R.; Fischer, S. M.; Sica, G.; Brat, D. J.; Shi, H. D.; Palapattu, G. S.; Lotan, Y.; Weizer, A. Z.; Terris, M. K.; Shariat, S. F.; Michailidis, G.; Sreekumar, A., Metabolomic Profiling Reveals Potential Markers and Bioprocesses Altered in Bladder Cancer Progression. Cancer Res 2011, 71 (24), 7376-7386. 36. Ganti, S.; Weiss, R. H., Urine metabolomics for kidney cancer detection and biomarker discovery. Urol Oncol-Semin Ori 2011, 29 (5), 551-557. 37. Gowda, G. A. N., Human bile as a rich source of biomarkers for hepatopancreatobiliary cancers. Biomark Med 2010, 4 (2), 299-314. 38. Cho, S. H.; Jung, B. H.; Lee, S. H.; Lee, W. Y.; Kong, G.; Chung, B. C., Direct determination of nucleosides in the urine of patients with breast cancer using column-switching liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2006, 20 (11), 1229-1236. 39. Seidel, A.; Brunner, S.; Seidel, P.; Fritz, G. I.; Herbarth, O., Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Brit J Cancer 2006, 94 (11), 1726-1733. 40. Matsuda, F., Technical Challenges in Mass Spectrometry-Based Metabolomics. Mass Spectrom (Tokyo) 2016, 5 (2), S0052. 41. Christians, U.; Klawitter, J.; Hornberger, A.; Klawitter, J., How Unbiased is Non-Targeted Metabolomics and is Targeted Pathway Screening the Solution? Curr Pharm Biotechno 2011, 12 (7), 1053-1066. 42. Evans, A. M.; DeHaven, C. D.; Barrett, T.; Mitchell, M.; Milgram, E., Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 2009, 81 (16), 6656-67. 43. Emwas, A. H.; Roy, R.; McKay, R. T.; Ryan, D.; Brennan, L.; Tenori, L.; Luchinat, C.; Gao, X.; Zeri, A. C.; Gowda, G. A. N.; Raftery, D.; Steinbeck, C.; Salek, R. M.; Wishart, D. S., Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis. J Proteome Res 2016, 15 (2), 360-373. 44. Scott, A. M.; Allison, J. P.; Wolchok, J. D., Monoclonal antibodies in cancer therapy. Cancer Immun 2012, 12, 14. 45. Ranpura, V.; Hapani, S.; Wu, S., Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 2011, 305 (5), 487-94. 46. Zhao, L.; Ren, T. H.; Wang, D. D., Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin 2012, 33 (11), 1339-47. 47. Glassman, P. M.; Balthasar, J. P., Mechanistic considerations for the use of monoclonal antibodies for cancer therapy. Cancer Biol Med 2014, 11 (1), 20-33. 48. Yi, L. Z.; He, J.; Liang, Y. Z.; Yuan, D. L.; Chau, F. T., Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett 2006, 580 (30), 6837-45. 49. Nezami Ranjbar, M. R.; Luo, Y.; Di Poto, C.; Varghese, R. S.; Ferrarini, A.; Zhang, C.; Sarhan, N. I.; Soliman, H.; Tadesse, M. G.; Ziada, D. H.; Roy, R.; Ressom, H. W., GC-MS Based Plasma Metabolomics for Identification of Candidate Biomarkers for Hepatocellular Carcinoma in Egyptian Cohort. Plos One 2015, 10 (6), e0127299. 50. Xie, G.; Lu, L.; Qiu, Y.; Ni, Q.; Zhang, W.; Gao, Y. T.; Risch, H. A.; Yu, H.; Jia, W., Plasma metabolite biomarkers for the detection of pancreatic cancer. J Proteome Res 2015, 14 (2), 1195-202. 51. Tchu, S. M.; Lynch, K. L.; Wu, A. H., Therapeutic drug monitoring of tamoxifen using LC-MS/MS. Methods Mol Biol 2012, 902, 211-22. 52. Jacob, S.; Nair, A. B., An Updated Overview on Therapeutic Drug Monitoring of Recent Antiepileptic Drugs. Drugs R D 2016, 16 (4), 303-316. 53. Yilmaz, B.; Sahin, H.; Erdem, A. F., Determination of naproxen in human plasma by GC-MS. J Sep Sci 2014, 37 (8), 997-1003. 54. Annesley, T. M.; McKeown, D. A.; Holt, D. W.; Mussell, C.; Champarnaud, E.; Harter, L.; Calton, L. J.; Mason, D. S., Standardization of LC-MS for therapeutic drug monitoring of tacrolimus. Clin Chem 2013, 59 (11), 1630-7. 55. Horning, E. C.; Horning, M. G., Metabolic profiles: gas-phase methods for analysis of metabolites. Clin Chem 1971, 17 (8), 802-9. 56. Thompson, J. A.; Markey, S. P., Quantitative metabolic profiling of urinary organic acids by gas chromatography-mass spectrometry: comparison of isolation methods. Anal Chem 1975, 47 (8), 1313-21. 57. Savolainen, O. I.; Sandberg, A. S.; Ross, A. B., A Simultaneous Metabolic Profiling and Quantitative Multimetabolite Metabolomic Method for Human Plasma Using Gas-Chromatography Tandem Mass Spectrometry. J Proteome Res 2016, 15 (1), 259-65. 58. Zheng, X.; Qiu, Y.; Zhong, W.; Baxter, S.; Su, M.; Li, Q.; Xie, G.; Ore, B. M.; Qiao, S.; Spencer, M. D.; Zeisel, S. H.; Zhou, Z.; Zhao, A.; Jia, W., A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 2013, 9 (4), 818-827. 59. Fernie, A. R.; Trethewey, R. N.; Krotzky, A. J.; Willmitzer, L., Innovation - Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Bio 2004, 5 (9), 763-769. 60. Ecker, D. M.; Jones, S. D.; Levine, H. L., The therapeutic monoclonal antibody market. Mabs-Austin 2015, 7 (1), 9-14. 61. Choi, B. K.; Gusev, A. I.; Hercules, D. M., Postcolumn introduction of an internal standard for quantitative LC-MS analysis. Anal Chem 1999, 71 (18), 4107-4110. 62. Bonfiglio, R.; King, R. C.; Olah, T. V.; Merkle, K., The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun Mass Sp 1999, 13 (12), 1175-1185. 63. Gonzalez, O.; van Vliet, M.; Damen, C. W. N.; van der Kloet, F. M.; Vreeken, R. J.; Hankemeier, T., Matrix Effect Compensation in Small-Molecule Profiling for an LC-TOF Platform Using Multicomponent Postcolumn Infusion. Anal Chem 2015, 87 (12), 5921-5929. 64. Liao, H. W.; Chen, G. Y.; Tsai, I. L.; Kuo, C. H., Using a postcolumn-infused internal standard for correcting the matrix effects of urine specimens in liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 2014, 1327, 97-104. 65. Liao, H. W.; Tsai, I. L.; Chen, G. Y.; Lu, Y. S.; Lin, C. H.; Kuo, C. H., Quantification of target analytes in various biofluids using a postcolumn infused-internal standard method combined with matrix normalization factors in liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 2014, 1358, 85-92. 66. Budczies, J.; Denkert, C.; Muller, B. M.; Brockmoller, S. F.; Klauschen, F.; Gyorffy, B.; Dietel, M.; Richter-Ehrenstein, C.; Marten, U.; Salek, R. M.; Griffin, J. L.; Hilvo, M.; Oresic, M.; Wohlgemuth, G.; Fiehn, O., Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study. Bmc Genomics 2012, 13. 67. Lv, W.; Yang, T., Identification of possible biomarkers for breast cancer from free fatty acid profiles determined by GC-MS and multivariate statistical analysis. Clinical Biochemistry 2012, 45 (1-2), 127-133. 68. Huang, C. H., Mixed-chain phospholipids: Structures and chain-melting behavior. Lipids 2001, 36 (10), 1077-1097. 69. Buczynski, M. W.; Dumlao, D. S.; Dennis, E. A., An integrated omics analysis of eicosanoid biology. J Lipid Res 2009, 50 (6), 1015-1038. 70. Calder, P. C., Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001, 36 (9), 1007-24. 71. Leonelli, M.; Graciano, M. F.; Britto, L. R., TRP channels, omega-3 fatty acids, and oxidative stress in neurodegeneration: from the cell membrane to intracellular cross-links. Braz. J. Med. Biol. Res. 2011, 44 (11), 1088-96. 72. Chua, M. E.; Sio, M. C.; Sorongon, M. C.; Dy, J. S., Relationship of dietary intake of omega-3 and omega-6 Fatty acids with risk of prostate cancer development: a meta-analysis of prospective studies and review of literature. Prostate cancer 2012, 2012, 826254. 73. MacLennan, M.; Ma, D. W., Role of dietary fatty acids in mammary gland development and breast cancer. Breast Cancer Res. 2010, 12 (5), 211. 74. Lagerstedt, S. A.; Hinrichs, D. R.; Batt, S. M.; Magera, M. J.; Rinaldo, P.; McConnell, J. P., Quantitative determination of plasma c8-c26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol. Genet. Metab. 2001, 73 (1), 38-45. 75. Lamari, F.; Mochel, F.; Sedel, F.; Saudubray, J. M., Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J. Inherit. Metab. Dis. 2013, 36 (3), 411-25. 76. Calder, P. C., n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin. Sci. 2004, 107 (1), 1-11. 77. Fiehn, O., Metabolomics - the link between genotypes and phenotypes. Plant Biol 2002, 48 (1-2), 155-171. 78. Sumner, L. W.; Mendes, P.; Dixon, R. A., Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 2003, 62 (6), 817-836. 79. Kell, D. B., Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 2004, 7 (3), 296-307. 80. Zhang, Y.; Song, L.; Liu, N.; He, C.; Li, Z., Decreased serum levels of free fatty acids are associated with breast cancer. Clin Chim Acta 2014, 437, 31-37. 81. Bannon, C. D.; Breen, G. J.; Craske, J. D.; Hai, N. T.; Harper, N. L.; Orourke, K. L., Analysis of fatty-acid methyl-esters with high-accuracy and reliability .3. Literature-review of and investigations into the development of rapid procedures for the methoxide-catalyzed methanolysis of fats and oils. J Chromatogr 1982, 247 (1), 71-89. 82. Aldai, N.; Murray, B. E.; Najera, A. I.; Troy, D. J.; Osoro, K., Derivatization of fatty acids and its application for conjugated linoleic acid studies in ruminant meat lipids. J Sci Food Agric 2005, 85 (7), 1073-1083. 83. Masood, A.; Stark, K. D.; Salem, N., A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res 2005, 46 (10), 2299-2305. 84. Delmonte, P.; Kia, A.-R. F.; Kramer, J. K. G.; Mossoba, M. M.; Sidisky, L.; Rader, J. I., Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. J Chromatogr A 2011, 1218 (3), 545-554. 85. Ando, Y.; Sasaki, T., GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase. J Am Oil Chem Soc 2011, 88 (6), 743-748. 86. Delmonte, P.; Fardin-Kia, A. R.; Kramer, J. K. G.; Mossoba, M. M.; Sidisky, L.; Tyburczy, C.; Rader, J. I., Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chromatogr A 2012, 1233, 137-146. 87. Gu, Q.; David, F.; Lynen, F.; Vanormelingen, P.; Vyverman, W.; Rumpel, K.; Xu, G.; Sandra, P., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota. J Chromatogr A 2011, 1218 (20), 3056-3063. 88. Ecker, J.; Scherer, M.; Schmitz, G.; Liebisch, G., A rapid GC-MS method for quantification of positional and geometric isomers of fatty acid methyl esters. J Chromatogr B 2012, 897, 98-104. 89. DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A., Breast Cancer Statistics, 2013. CA Cancer J Clin 2014, 64 (1), 52-62. 90. Lin, C. H.; Liau, J. Y.; Lu, Y. S.; Huang, C. S.; Lee, W. C.; Kuo, K. T.; Shen, Y. C.; Kuo, S. H.; Lan, C.; Liu, J. M.; Kuo, W. H.; Chang, K. J.; Cheng, A. L., Molecular subtypes of breast cancer emerging in young women in Taiwan: evidence for more than just westernization as a reason for the disease in Asia. Cancer Epidem Biomar 2009, 18 (6), 1807-1814. 91. Walsh, G., Biopharmaceutical benchmarks 2014. Nat Biotechnol 2014, 32 (10), 992-1000. 92. Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Engl J Med 2004, 350 (23), 2335-2342. 93. Mulleman, D.; Meric, J. C.; Paintaud, G.; Ducourau, E.; Magdelaine-Beuzelin, C.; Valat, J. P.; Goupille, P.; GICC, C. N. R. S. U., Infliximab concentration monitoring improves the control of disease activity in rheumatoid arthritis. Arthritis Res Ther 2009, 11 (6). 94. Wang, W.; Wang, E. Q.; Balthasar, J. P., Monoclonal Antibody Pharmacokinetics and Pharmacodynamics. Clin Pharmacol Ther 2008, 84 (5), 548-558. 95. Ranpura, V.; Hapani, S.; Wu, S. H., Treatment-Related Mortality With Bevacizumab in Cancer Patients A Meta-analysis. Jama-J Am Med Assoc 2011, 305 (5), 487-494. 96. Damen, C. W. N.; de Groot, E. R.; Heij, M.; Boss, D. S.; Schellens, J. H. M.; Rosing, H.; Beijnen, J. H.; Aarden, L. A., Development and validation of an enzyme-linked immunosorbent assay for the quantification of trastuzumab in human serum and plasma. Anal Biochem 2009, 391 (2), 114-120. 97. Ternant, D.; Mulleman, D.; Degenne, D.; Willot, S.; Guillaumin, J. M.; Watier, H.; Goupille, P.; Paintaud, G., An enzyme-linked immunosorbent assay for therapeutic drug monitoring of infliximab. Ther Drug Monit 2006, 28 (2), 169-174. 98. Kim, W.; Lee, J. E.; Li, X. F.; Kim, S. H.; Han, B. G.; Lee, B. I.; Kim, J. K.; Choi, K.; Kim, H. J., Quantitative measurement of anti-aquaporin-4 antibodies by enzyme-linked immunosorbent assay using purified recombinant human aquaporin-4. Mult Scler J 2012, 18 (5), 578-586. 99. O'Hara, D. M.; Theobald, V.; Egan, A. C.; Usansky, J.; Krishna, M.; TerWee, J.; Maia, M.; Spriggs, F. P.; Kenney, J.; Safavi, A.; Keefe, J., Ligand Binding Assays in the 21st Century Laboratory: Recommendations for Characterization and Supply of Critical Reagents. Aaps J 2012, 14 (2), 316-328. 100. Staack, R. F.; Stracke, J. O.; Stubenrauch, K.; Vogel, R.; Schleypen, J.; Papadimitriou, A., Quality requirements for critical assay reagents used in bioanalysis of therapeutic proteins: what bioanalysts should know about their reagents. Bioanalysis 2011, 3 (5), 523-534. 101. Savoie, N.; Garofolo, F.; van Amsterdam, P.; Bansal, S.; Beaver, C.; Bedford, P.; Booth, B. P.; Evans, C.; Jemal, M.; Lefebvre, M.; de Silva, A. L. L.; Lowes, S.; Marini, J. C.; Masse, R.; Mawer, L.; Ormsby, E.; Rocci, M. L.; Viswanathan, C. T.; Wakelin-Smith, J.; Welink, J.; White, J. T.; Woolf, E., 2010 White Paper on Recent Issues in Regulated Bioanalysis & Global Harmonization of Bioanalytical Guidance. Bioanalysis 2010, 2 (12), 1945-1960. 102. Casteele, N. V.; Buurman, D. J.; Sturkenboom, M. G. G.; Kleibeuker, J. H.; Vermeire, S.; Rispens, T.; van der Kleij, D.; Gils, A.; Dijkstra, G., Detection of infliximab levels and anti-infliximab antibodies: a comparison of three different assays. Aliment Pharm Ther 2012, 36 (8), 765-771. 103. Yang, Z. P.; Hayes, M.; Fang, X. P.; Daley, M. P.; Ettenberg, S.; Tse, F. L. S., LC-MS/MS approach therapeutic proteins for quantification of in plasma using a protein internal standard and 2D-solid-phase extraction cleanup. Anal Chem 2007, 79 (24), 9294-9301. 104. Jourdil, J. F.; Lebert, D.; Gautier-Veyret, E.; Lemaitre, F.; Bonaz, B.; Picard, G.; Tonini, J.; Stanke-Labesque, F., Infliximab quantitation in human plasma by liquid chromatography-tandem mass spectrometry: towards a standardization of the methods? Anal Bioanal Chem 2017, 409 (5), 1195-1205. 105. Bults, P.; van de Merbel, N. C.; Bischoff, R., Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Rev Proteomic 2015, 12 (4), 355-374. 106. Hopfgartner, G.; Lesur, A.; Varesio, E., Analysis of biopharmaceutical proteins in biological matrices by LC-MS/MS II. LC-MS/MS analysis. Trac-Trend Anal Chem 2013, 48, 52-61. 107. Stojiljkovic, N.; Paris, A.; Garcia, P.; Popot, M. A.; Bonnaire, Y.; Tabet, J. C.; Junot, C., Application and challenges in using LC-MS assays for absolute quantitative analysis of therapeutic proteins in drug discovery. Bioanalysis 2014, 6 (6), 785-803. 108. Iwamoto, N.; Umino, Y.; Aoki, C.; Yamane, N.; Hamada, A.; Shimada, T., Fully validated LCMS bioanalysis of Bevacizumab in human plasma using nano-surface and molecular-orientation limited (nSMOL) proteolysis. Drug Metab. Pharmacokinet. 2016, 31 (1), 46-50. 109. Lu, Q. Z.; Zheng, X. Y.; McIntosh, T.; Davis, H.; Nemeth, J. F.; Pendley, C.; Wu, S. L.; Hancock, W. S., Development of Different Analysis Platforms with LC-MS for Pharmacokinetic Studies of Protein Drugs. Anal Chem 2009, 81 (21), 8715-8723. 110. Ocana, M. F.; James, I. T.; Kabir, M.; Grace, C.; Yuan, G. J.; Martin, S. W.; Neubert, H., Clinical Pharmacokinetic Assessment of an Anti-MAdCAM Monoclonal Antibody Therapeutic by LC-MS/MS. Anal Chem 2012, 84 (14), 5959-5967. 111. Li, H. Y.; Ortiz, R.; Tran, L.; Hall, M.; Spahr, C.; Walker, K.; Laudernann, J.; Miller, S.; Salimi-Moosavi, H.; Lee, J. W., General LC-MS/MS Method Approach to Quantify Therapeutic Monoclonal Antibodies Using a Common Whole Antibody Internal Standard with Application to Preclinical Studies. Anal Chem 2012, 84 (3), 1267-1273. 112. Todoroki, K.; Nakano, T.; Eda, Y.; Ohyama, K.; Hayashi, H.; Tsuji, D.; Min, J. Z.; Inoue, K.; Iwamoto, N.; Kawakami, A.; Ueki, Y.; Itoh, K.; Toyo'oka, T., Bioanalysis of bevacizumab and infliximab by high-temperature reversed-phase liquid chromatography with fluorescence detection after immunoaffinity magnetic purification. Anal Chim Acta 2016, 916, 112-119. 113. Iwamoto, N.; Shimada, T.; Umino, Y.; Aoki, C.; Aoki, Y.; Sato, T. A.; Hamada, A.; Nakagama, H., Selective detection of complementarity-determining regions of monoclonal antibody by limiting protease access to the substrate: nano-surface and molecular-orientation limited proteolysis. Analyst 2014, 139 (3), 576-80. 114. Gonzalez-Quintela, A.; Alende, R.; Gude, F.; Campos, J.; Rey, J.; Meijide, L. M.; Fernandez-Merino, C.; Vidal, C., Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin Exp Immunol 2008, 151 (1), 42-50. 115. Peng, X. Y.; Liu, B. N.; Li, Y. T.; Wang, H.; Chen, X.; Guo, H. Z.; Guo, Q. C.; Xu, J.; Wang, H.; Zhang, D. P.; Dai, J. X.; Hou, S.; Guo, Y. J., Development and Validation of LC-MS/MS Method for the Quantitation of Infliximab in Human Serum. Chromatographia 2015, 78 (7-8), 521-531. 116. Dispenzieri, A.; Gertz, M. A.; Therneau, T. M.; Kyle, R. A., Retrospective cohort study of 148 patients with polyclonal gammopathy. Mayo Clin Proc 2001, 76 (5), 476-487. 117. DeSilva, B.; Smith, W.; Weiner, R.; Kelley, M.; Smolec, J. M.; Lee, B.; Khan, M.; Tacey, R.; Hill, H.; Celniker, A., Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res 2003, 20 (11), 1885-1900. 118. El Amrani, M.; van den Broek, M. P. H.; Gobel, C.; van Maarseveen, E. M., Quantification of active infliximab in human serum with liquid chromatography-tandem mass spectrometry using a tumor necrosis factor alpha-based pre-analytical sample purification and a stable isotopic labeled infliximab bio-similar as internal standard: A target-based, sensitive and cost-effective method. J Chromatogr A 2016, 1454, 42-48. 119. Ferrara, N.; Hillan, K. J.; Gerber, H. P.; Novotny, W., Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004, 3 (5), 391-400. 120. Lanshoeft, C.; Wolf, T.; Heudi, O.; Cianferani, S.; Barteau, S.; Walles, M.; Picard, F.; Kretz, O., The use of generic surrogate peptides for the quantitative analysis of human immunoglobulin G1 in pre-clinical species with high-resolution mass spectrometry. Anal Bioanal Chem 2016, 408 (6), 1687-1699. 121. Bender, J. L. G.; Adamson, P. C.; Reid, J. M.; Xu, L.; Baruchel, S.; Shaked, Y.; Kerbel, R. S.; Cooney-Qualter, E. M.; Stempak, D.; Chen, H. X.; Nelson, M. D.; Krailo, M. D.; Ingle, A. M.; Blaney, S. M.; Kandel, J. J.; Yamashiro, D. J., Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: A children's oncology group study. J Clin Oncol 2008, 26 (3), 399-405. 122. Lu, J. F.; Bruno, R.; Eppler, S.; Novotny, W.; Lum, B.; Gaudreault, J., Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemoth Pharm 2008, 62 (5), 779-786. 123. Ternant, D.; Ceze, N.; Lecomte, T.; Degenne, D.; Duveau, A. C.; Watier, H.; Dorval, E.; Paintaud, G., An Enzyme-Linked Immunosorbent Assay to Study Bevacizumab Pharmacokinetics. Ther Drug Monit 2010, 32 (5), 647-652. 124. Nugue, G.; Bidart, M.; Arlotto, M.; Mousseau, M.; Berger, F.; Pelletier, L., Monitoring Monoclonal Antibody Delivery in Oncology: The Example of Bevacizumab. Plos One 2013, 8 (8). 125. Reichert, J. M., Antibodies to watch in 2014. Mabs-Austin 2014, 6 (1), 5-14. 126. Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D. R.; Steins, M.; Ready, N. E.; Chow, L. Q.; Vokes, E. E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhaufl, M.; Arrieta, O.; Burgio, M. A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D. E.; Gettinger, S. N.; Rudin, C. M.; Rizvi, N.; Crino, L.; Blumenschein, G. R.; Antonia, S. J.; Dorange, C.; Harbison, C. T.; Finckenstein, F. G.; Brahmer, J. R., Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. New Engl J Med 2015, 373 (17), 1627-1639. 127. Chan, A. C.; Carter, P. J., Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 2010, 10 (5), 301-316. 128. Hortobagyi, G. N., Trastuzumab in the treatment of breast cancer. New Engl J Med 2005, 353 (16), 1734-1736. 129. McCormack, P. L.; Keam, S. J., Bevacizumab - A review of its use in metastatic colorectal cancer. Drugs 2008, 68 (4), 487-506. 130. Munnink, T. H. O.; Henstra, M. J.; Segerink, L. I.; Movig, K. L. L.; Brummelhuis-Visser, P., Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory and Malignant Disease: Translating TNF-alpha Experience to Oncology. Clin Pharmacol Ther 2016, 99 (4), 419-431. 131. Vozy, A.; Zalcman, G., Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. Oncologie 2015, 17 (9), 407-408. 132. Rugo, H. S.; Delord, J. P.; Im, S. A.; Ott, P. A.; Piha-Paul, S. A.; Bedard, P. L.; Sachdev, J.; Le Tourneau, C.; van Brummelen, E.; Varga, A.; Saraf, S.; Pietrangelo, D.; Karantza, V.; Tan, A., Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1 positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. Cancer Res. 2016, 76. 133. Gao, B.; Yeap, S.; Clements, A.; Balakrishnar, B.; Wong, M.; Gurney, H., Evidence for Therapeutic Drug Monitoring of Targeted Anticancer Therapies. J Clin Oncol 2012, 30 (32), 4017-4025. 134. Minasian, L.; Rosen, O.; Auclair, D.; Rahman, A.; Pazdur, R.; Schilsky, R. L., Optimizing Dosing of Oncology Drugs. Clin Pharmacol Ther 2014, 96 (5), 572-579. 135. Xu, K. Y.; Liu, L. N.; Maia, M.; Li, J.; Lowe, J.; Song, A.; Kaur, S., A multiplexed hybrid LC-MS/MS pharmacokinetic assay to measure two co-administered monoclonal antibodies in a clinical study. Bioanalysis 2014, 6 (13), 1781-1794. 136. Iwamoto, N.; Yamane, N.; Umino, Y.; Hamada, A.; Shimada, T., The development of the validated LCMS bioanalysis of trastuzumab in human plasma using a selective detection method for complementarity-determining regions of monoclonal antibodies: nano-surface and molecular-orientation limited (nSMOL) proteolysis. Anal Methods-Uk 2015, 7 (21), 9177-9183. 137. Iwamoto, N.; Shimada, T.; Terakado, H.; Hamada, A., Validated LC-MS/MS analysis of immune checkpoint inhibitor Nivolumab in human plasma using a Fab peptide-selective quantitation method: nano-surface and molecular-orientation limited (nSMOL) proteolysis. J Chromatogr B 2016, 1023, 9-16. 138. El Amrani, M.; van den Broek, M. P.; Gobel, C.; van Maarseveen, E. M., Quantification of active inflixim | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7411 | - |
| dc.description.abstract | 癌症一直是全球人類死亡的主要原因之一,許多的研究,例如癌症風險因子評估、癌症的偵測方法、以及改善癌症的治療都是為減少其致死率。透過生物標誌的尋找,可以幫助病人早期發現疾病,達到早期診斷早期治療的效果。此外,由於單株抗體類的藥物常被廣泛的應用在癌症的治療上,而目前許多單株抗體藥物類的藥物動力學與藥效學還在進行研究,因此提供一個準確、精確的定量方法將有助於這些研究的進行。本研究使用氣相層析質譜儀與液相層析質譜儀來開發生醫分析方法應用於癌症偵測以及單株抗體藥物治療,期望可以改善癌症的治療,達到促進個人化醫療的契機。
本論文分成兩個部分,第一部分我們使用標的代謝體學方法在氣相層析質譜儀平台上尋找具有潛力的脂肪酸做為乳癌的生物標誌。早期偵測乳癌不但可以減少致死率,同時也可以提升治癒率。為了尋找具有潛力的脂肪酸作為生物標誌,我們利用氣相層析質譜儀開發代謝體學的脂肪酸分析方法,測定血漿樣品中的脂肪酸組成。血漿樣品經由乙醯氯進行衍生化反應,以氣相層析質譜儀進行分析,而確效的結果也顯示大於90%的定量結果誤差小於15%,在日內以及異日間的再現性評估,超過90%的結果其相對標準偏差都落在15%以內。我們進一步分析了健康受試者以及乳癌病患的血液中脂肪酸的含量。考量停經可能會影響脂肪酸的組成,我們將樣品分為停經前後的組別。本研究觀察到在停經後組別中,乳癌病患的血漿樣品內,C18:2n6、C22:0、C24:0這三個脂肪酸的含量顯著低於健康受試者,而在停經前的組別中,除了上述三個脂肪酸外,還有C16:0、C18:0、C18:1n9c、C20:0、C20:4n6、C22:6n3以及C24:1n9在乳癌病患血漿樣品中的含量也都顯著低於健康受試者。我們也進一步利用這些具有潛力的乳癌生物標誌建立乳癌的預測模型。最佳化後的預測模型如下: 在停經後以C18:2n6、C22:0、C24:0建立的預測模型,其受試者操作特徵曲線下部分面積數值為0.72,靈敏度與專一性數值分別為70.6%以及70.4%。而在停經前的組別當中,我們分別以C22:0、C24:1n9建立的預測模型,其受試者操作特徵曲線下部分面積數值為0.78,靈敏度與專一性數值分別為73.3%以及70.8%。 第二部分使用液相層析質譜儀開發兩個單株抗體藥物的血中濃度分析方法,我們先建立了一個以Protein G 磁珠樣品前處理的方法,從複雜的血液樣品基質當中,純化目標分析物,單株抗體藥物-Bevacizumab,並利用另一個immunoglobulin G (IgG)類的單株抗體藥物-Tocilizumab做為內標,校正在樣品配置過程中,可能產生之誤差。分析方法確效後,我們將本方法應用於實際臨床檢體之測量,定量病患體內的Bevacizumab濃度。結果顯示,儘管給予的Bevacizumab劑量相同,採血的時間點也相同,病人個體之間的藥物血中濃度仍然會具有達到兩倍多的差異。本方法可以應用於Bevacizumab的藥物動力學以及藥效學的研究,並提供一個監測Bevacizumab藥物血中濃度的方法。 有鑑於免疫球蛋白G (IgG) 類的藥物在目前大部分經由美國食品藥物管理局核准的單株抗體物中佔有很高的比例,為了促進這類型藥物的藥物動力學以及藥效學的研究,並提供藥物濃度監測的方法,我們另外開發了一個具有廣用性的液相層析質譜儀分析平台,定量血液樣品中IgG類的單株抗體藥物濃度,並以三個IgG類的藥物:Pembrolizumab、Nivolumab、Bevacizumab做為測試藥物,來證明平台的應用性。我們選擇了protein G作為我們的樣品純化方法,並發展雙內標校正法,使用一個IgG類的藥物tocilizumab做為樣品配置時的內標,搭配柱後注入內部標準品方法。研究結果顯示,三個測試單株抗體藥物的定量準確度的數值都落在100 ± 15%之間,在日內以及日間的再現性評估,相對標準偏差也都落在15%以內,顯示了雙內標校正法可以有效改善定量準確度。我們將分析方法應用於臨床血液檢體的波谷濃度點,定量結果顯示本方法具有足夠的靈敏度可以定量三個測試藥物的血中濃度。 本論文透過標的代謝體學的方法,尋找具有潛力的脂肪酸做為乳癌生物標誌,並開發單株抗體藥物血中濃度的測量方法。這些方法都經過分析方法確效,並且實際應用在臨床檢體的分析以確認方法的應用性。未來也期望這些分析方法可以更廣泛的使用於臨床,達到個人化醫療的最終目標。 | zh_TW |
| dc.description.abstract | Cancer is one of the leading causes of death globally. To fight this disease, the researches such as the risk factors of cancer, cancer detection methods, and cancer treatment are all growing rapidly in recent years. Biomarker discovery was one of the potential strategies for early detection of cancer. In addition, due to the promising efficacy of therapeutic monoclonal antibodies (mAbs), these types of drugs are frequently used in the cancer treatment. Many studies are still investigating the pharmacokinetic (PK) and pharmacodynamic (PD) properties of therapeutic mAbs. Therefore, an accurate and precise quantification method would facilitate these studies. This study used both gas-chromatography mass spectrometry (GC-MS) and liquid- chromatography mass spectrometry (LC-MS) platforms to develop bio-analytical methods for cancer detection and quantification of therapeutic monoclonal antibodies (mAbs) drugs, and hopefully to improve cancer treatment and also to facilitate precision medicine.
This thesis is divided into two parts. In the first part, we used a targeted metabolomics approach to investigate the potential fatty acids as the biomarkers for breast cancer (BC) detection on GC-MS. Detect BC at early stage could not only reduce the cancer mortality but also improve the treatment outcome. To investigate potential fatty acid biomarkers, we developed a fatty acid profiling method for plasma metabolomic studies by GC-MS. The plasma samples were derivatized by acetyl chloride, and then analyzed by GC-MS. This analytical method was validated with accuracy within 100 ± 15%, and the intraday and interday precision were lower than 15% RSD for over 90% analytes. We further analyzed fatty acid profiles in both healthy volunteers and BC patients. To consider that the fatty acid profiles would be affected by the menopausal status, we divided the samples into pre- menopausal and post- menopausal. In post-menopausal group, the concentrations of three fatty acids including C22:0, C24:0, C18:2n6 were significantly lower in BC patients. In addition to C22:0, C24:0, C18:2n6, seven fatty acids, including C16:0, C18:0, C18:1n9c, C20:0, C20:4n6, C22:6n3, and C24:1n9, showed significant differences in pre-menopausal patients. We further applied these potential BC biomarkers to build the prediction model. The optimal prediction model for post-menopausal group was built by C18:2n6, C22:0 and C24:0 with the area under the curve (AUC) value of 0.72 (70.6% sensitivity and 70.4% specificity). In pre-menopausal group, the prediction model was built by C22:0 and C24:1n9, with the AUC value of 0.78 (73.3% sensitivity and 70.8% specificity). In the second part of this thesis, we developed two analytical methods for therapeutic mAb quantification in human plasma samples. In the first study, we developed a protein G purification method to trap the target analyte, bevacizumab, from human plasma, and applied another immunoglobulin G (IgG) based drug tocilizumab as the internal standard to correct the potential loss during sample preparation procedure. The method was validated, and then used to quantify the bevacizumab concentrations in patients’ plasma samples. The quantification results revealed that bevacizumab concentrations fluctuated significantly between individuals even though the dosage of bevacizumab and the collection time point were both the same for the tested individuals. This method could be applied to investigate the PK and PD properties of bevacizumab, and also for conducting therapeutic drug monitoring (TDM) of bevacizumab. IgG represents a high percentage of mAb drugs that have been approved by the Food and Drug Administration (FDA). To facilitate therapeutic drug monitoring and PK/PD studies, we developed a general LC-MS/MS method to quantify the concentration of IgG-based mAbs in human plasma. Three IgG-based drugs (bevacizumab, nivolumab and pembrolizumab) were selected to demonstrate our method. Protein G beads were used for sample pretreatment, combined with a two internal standard (IS) calibration method that includes the IgG-based drug-IS tocilizumab and post-column infused IS. The results indicated that the accuracy for three demonstration drugs were all within 100 ±15%. The intraday and interday precision were lower than 15% RSD. Using two internal standards was found to effectively improve quantification accuracy. The successful application of the method to clinical samples at trough levels demonstrated its’ applicability in clinical analysis This thesis used a targeted metabolomic approach to investigate the potential fatty acids as the BC detection biomarkers, and developed LC-MS/MS methods for quantifying therapeutic mAbs concentrations in human plasma. All of these methods were validated, and applied to clinical samples to investigate the method applicability. It is anticipated that these methods could be applied to clinical practice, and to achieve the goals of personalized medicine. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:43:07Z (GMT). No. of bitstreams: 1 ntu-107-F00423028-1.pdf: 2636497 bytes, checksum: 993c265816e40499333b4e048f4bce52 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Contents
中文摘要 III Abstract VI Figure contents XIV Table contents XV Chapter 1. Introduction 1 1.1 Cancer 2 1.2 Using metabolomics for breast cancer detection 3 1.3 Cancer treatment with therapeutic monoclonal antibody (mAb) 6 1.4 Research aim and organization of this thesis 7 Chapter 2. Using metabolomic approach for breast cancer detection 12 Ch2.1 Using targeted metabolomic approach for fatty acid analysis for breast cancer detection 12 2.1.1 Introduction 13 2.1.2 Experimental 15 2.1.2.1 Chemicals and reagents 16 2.1.2.2 Human blood collection and sample preparation 17 2.1.2.3. Gas chromatography–mass spectrometry analysis 18 2.1.2.4. Acetyl chloride derivatization method 19 2.1.2.5 Data processing 20 2.1.3 Results and discussion 20 2.1.3.1 Development of the GC-MS method 21 2.1.3.2 Method validation 22 2.1.3.3 Fatty acid profiling in breast cancer research 24 2.1.4 Conclusions 26 Chapter 3. 34 Development of LC-MS/MS methods for IgG based therapeutic monoclonal antibodies quantification 34 Ch3.1 Development of an LC-MS/MS method with protein G purification strategy for quantifying bevacizumab in human plasma 35 3.1.1 Introduction 36 3.1.2 Materials and methods 39 3.1.2.1 Reagents and materials 39 3.1.2.2 LC-MS/MS system 40 3.1.2.3 Trap and digestion of bevacizumab from human plasma 41 3.1.2.4 Method validation 42 3.1.2.4.1 Selectivity 42 3.1.2.4.2 Linearity, limits of detection (LOD), limits of quantification (LOQ) 42 3.1.2.4.3 Accuracy and precision 43 3.1.2.4.4 Stability, matrix effect and extraction recovery 43 3.1.2.5 Collection of clinical samples 44 3.1.3 Results and discussion 45 3.1.3.1 Method development 45 3.1.3.1.1 Selection of surrogate peptides of bevacizumab 45 3.1.3.1.2 Trapping of immunoglobulin G monoclonal antibodies by using protein G beads 46 3.1.3.1.3 Optimization of the protein G trapping procedure 46 3.1.3.1.4 Optimization of the trypsin digestion procedure 48 3.1.3.1.5 Selection of internal standards for improving quantification accuracy 49 3.1.3.2 Method validation 51 3.1.3.2.1 Selectivity 51 3.1.3.2.2 Linearity, limits of detection (LOD), limits of quantification (LOQ) 51 3.1.3.2.3 Accuracy and precision 51 3.1.3.2.4 Stability, matrix effect and extraction recovery 52 3.1.3.3 Clinical sample analysis 53 3.1.3.4 Discussion 53 3.1.4 Conclusions 56 Ch3.2 A general method for quantifying IgG-based therapeutic monoclonal antibodies in human plasma using protein G purification coupled with a two internal standard calibration strategy using LC-MS/MS 67 3.2.1 Introduction 68 3.2.2 Materials and methods 71 3.2.2.1 Chemicals 71 3.2.2.2 LC-MS/MS 72 3.2.2.3 Trapping and digestion of mAb drugs from human plasma 73 3.2.2.4 Calibration using two internal standards 74 3.2.2.5 Data analysis 74 3.2.2.6 Method validation 75 3.2.2.6.1 Selectivity 75 3.2.2.6.2 Linearity, limits of detection (LOD) and limits of quantification (LOQ) 75 3.2.2.6.3 Accuracy and precision 76 3.2.2.6.4 Stability and matrix effects 77 3.2.2.7 Collection of clinical samples 78 3.2.3 Results and discussion 78 3.2.3.1 Method development 78 3.2.3.1.1 Selection of surrogate peptides for bevacizumab, nivolumab and pembrolizumab 78 3.2.3.1.2 Purification of mAb drugs using protein G beads 79 3.2.3.1.3 Optimization of the sample preparation procedure 80 3.2.3.1.4 Use of two internal standards for improving quantification accuracy 82 3.2.3.2 Method validation 85 3.2.3.2.1 Selectivity 85 3.2.3.2.2 Linearity, limits of detection (LOD) and limits of quantification (LOQ) 85 3.2.3.2.3 Accuracy and precision 86 3.2.3.2.4 Stability and matrix effects 86 3.2.3.3 Clinical applications 87 3.2.3.4 Discussion 88 3.2.4 Conclusions 90 Chapter 4. Summary and Perspectives 99 4.1 Summary and perspective 100 Chapter 5. References 104 | |
| dc.language.iso | en | |
| dc.subject | 柱後注入內部標準品校正方法 | zh_TW |
| dc.subject | 癌症 | zh_TW |
| dc.subject | Protein G純化 | zh_TW |
| dc.subject | 單株抗體藥物 | zh_TW |
| dc.subject | 液相層析質譜法 | zh_TW |
| dc.subject | 生物標誌 | zh_TW |
| dc.subject | 氣相層析質譜法 | zh_TW |
| dc.subject | 代謝體學 | zh_TW |
| dc.subject | 生醫分析 | zh_TW |
| dc.subject | therapeutic monoclonal antibodies | en |
| dc.subject | post-column infused internal standard method | en |
| dc.subject | protein G purification | en |
| dc.subject | metabolomics | en |
| dc.subject | cancer | en |
| dc.subject | gas chromatography–mass spectrometry | en |
| dc.subject | biomarker | en |
| dc.subject | liquid chromatography- mass spectrometry | en |
| dc.subject | biomedical analysis | en |
| dc.title | 以質譜法開發偵測癌症之生物標誌與定量人體血漿中之單株抗體藥物 | zh_TW |
| dc.title | Using mass spectrometry for investigating cancer detection markers and quantifying therapeutic monoclonal antibodies in human plasma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李仁愛,賴建成,陳逸然,陳頌方 | |
| dc.subject.keyword | 癌症,生醫分析,代謝體學,氣相層析質譜法,生物標誌,液相層析質譜法,單株抗體藥物,Protein G純化,柱後注入內部標準品校正方法, | zh_TW |
| dc.subject.keyword | cancer,biomedical analysis,metabolomics,gas chromatography–mass spectrometry,biomarker,liquid chromatography- mass spectrometry,therapeutic monoclonal antibodies,protein G purification,post-column infused internal standard method, | en |
| dc.relation.page | 129 | |
| dc.identifier.doi | 10.6342/NTU201804105 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-10-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-03-05 | - |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 2.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
