請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7410完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文方(Wen-Fang Wu) | |
| dc.contributor.author | Yu-Heng Lin | en |
| dc.contributor.author | 林鈺衡 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:43:06Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.available | 2021-05-19T17:43:06Z | - |
| dc.date.copyright | 2019-01-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-11-01 | |
| dc.identifier.citation | [1] F.P.G. Márquez, A.M. Tobias, J.M. Pinar Pérez, M. Papaelias, “Condition monitoring of wind turbines: techniques and methods,” Renew. Energy, Vol. 46, pp. 169-178, Oct. 2012.
[2] R. Billinton, G. Bai, “Generating capacity adequacy associated with wind energy,” IEEE Transactions on Energy Conversion, Vol. 19, No. 3, pp. 641-646, Sep. 2004. [3] S. Kahrobaee, S. Asgarpoor, “Risk-based failure mode and effect analysis for wind turbines (RB-FMEA),” Proceedings of the north american power symposium (NAPS), Boston, MA, USA, pp. 1-7, Aug. 2011. [4] G.J.W. van Bussel, M.B. Zaaijer, Estimation of wind turbine reliability figures within the DOWEC project, DOWEC Nr. 10048 Issue 4, Oct. 2003. [5] J. Rhee. Seung, I. Kosuke, “Using cost based FMEA to enhance reliability and serviceability,” Journal of Advanced Engineering Informatics, Vol. 17, Issues 3-4, pp. 179-188, Jul-Oct. 2003. [6] B. Hahn, M. Durstewitz, K. Rohrig, Reliability of wind turbines experiences of 15 years with 1,500 WTs, Institut für Solare Energieversorgungstechnik (ISET), Verein an der Universität Kassel e.V., 34119 Kassel, Germany, Jan. 2006. [7] P.J. Tavner, G.J.W. van Bussel, F. Spinato, “Machine and converter reliabilities in wind turbines,” Proceedings of 3rd international conference on power electronics, machines and drives (PEMD), The Contarf Castle, Dublin, Ireland, Ireland, pp. 127-130, Apr. 2006. [8] J. Ribrant, LM. Bertling, “Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005,” IEEE Transactions on Energy Conversion, Vol. 22, No. 1, pp. 167-173, Feb. 2007. [9] H. Arabian-Hoseynabadi, H. Oraee, P. J. Tavner, “Failure modes and effects analysis (FMEA) for wind turbines,” International journal of electrical power and energy systems, Vol. 32, No. 7, pp. 817-824, Sep. 2010. [10] J. Gnana Sunderam, M. Raj Mohan, “Integrated system-reliability analysis for wind turbine,” International journal of production technology and management Research, Vol. 2, Issue 1, pp. 9-16, Jan-Jun. 2011. [11] M.K. Das, S.C. Panja, S. Chowdhury, S.P. Chowdhury, A.I. Elombo, “Expert-based FMEA of wind turbine system,” Proceedings of the IEEE international conference on industrial engineering and engineering management (IEEM), Singapore, pp. 1585-1589, Dec. 2011. [12] P. Botsaris, E. Konstantinidis, D. Pitsa, Systemic assessment and analysis of factors affect the reliability of a wind turbine, Institut za istraživanja i projektovanja u privredi Beograd (IIPP), Vol. 10, No. 2, pp. 85-92, Jan. 2012. [13] M. Shafiee, F. Dinmohammadi, “An FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshore,” Energies, Vol. 7, No. 2, pp. 619-642, Feb. 2014. [14] M. Martinez Luengo, A. Kolios, “Failure mode identification and end of life scenarios of offshore wind turbines: A Review,” Energies, Vol. 8, No. 8, pp. 8339-8354, Apr. 2015. [15] A. Pliego Marugán, F.P. García Márquez, J.M. Pinar Pérez, “Optimal maintenance management of offshore wind farms,” Energies, Vol. 9, No. 1, p. 46, Jan. 2016. [16] L. Alhmoud, B. Wang, “A review of the state-of-the-art in wind-energy reliability analysis,” Renewable and Sustainable Energy Reviews, Vol. 81, No. 2, pp.1643-1651, Jan. 2018. [17] C.E. Ebeling, An introduction to reliability and maintainability engineering, McGraw-Hill, New York, 1997. [18] A. Pillay, J. Wang, “Modified failure mode and effects analysis using approximate reasoning,” Reliability Engineering & System Safety, Vol. 79, No. 1, pp. 69-85, Jan. 2003. [19] H.-C. Liu, L. Liu, Q.-H. Bian, Q.-L. Lin, N. Dong, P.-C. Xu, “Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory,” Expert Systems with Applications, Vol. 38, No. 4, pp. 4403-4415, Apr. 2011. [20] United States Department of Defense, MIL-STD-1629A, Military standard procedures for performing a failure mode, effects and criticality analysis, Nov. 1980. [21] 柯煇耀,預防性失效分析---FMECA & FTA之應用,中華民國品質學會,2001。 [22] S. Noh, J. Shortle, “Sensitivity analysis of event sequence diagrams for aircraft accident scenarios,” Proceedings of 34th digital avionics systems conference (DASC), Prague, Czech Republic, 3E2-1 - 3E2-12, Oct. 2015. [23] J. Ribrant, Reliability performance and maintenance - a survey of failures in wind power systems, Master thesis, KTH School of Electrical Engineering, Sweden, 2006. [24] Underhåll terminologi - maintenance terminology, Svensk standard SS-EN 13306, SIS Förlag AB, Stockholm, 2001. [25] A. Cooperman, M. Martinez, “Load monitoring for active control of wind turbines,” Renewable and Sustainable Energy Reviews, Vol. 41, pp. 189-201, Jan. 2015. [26] F.P. García Márquez, J.M. Pinar Pérez, A. Pliego Marugán, M. Papaelias, “Identification of critical components of wind turbines using FTA over the time,” Renew. Energy, Vol. 87, No. 2, pp. 869-883, Mar. 2016. [27] Schaumann & Keindorf Ingenieurges, Construction of a steel tubular tower ,2002. http://www.ski-consult.de/1/erneuerbare-energien/windenergieanlagen/stahlrohrturm.html [摘錄時間:2018年3月12日。] [28] Khaled Ziane, Analyse, Évaluation et Réduction des Risques d’un Parc Éolien, Sciences de l’ingénieur[physics], Univesité d’Oran 2 Mohamed Ben Ahmed, Français, Jul. 2017. [29] REVE, Whirlpool promotes wind energy with Findlay wind farm with Goldwind wind turbines, 2015.https://www.evwind.es/2015/06/16/whirlpool-promotes-wind-energy-with-findlay-wind-farm-with-goldwind-wind-turbines/52788 [摘錄時間:2018年3月23日。] [30] J. Keller, R. Wallen, Gearbox reliability collaborative phase 3 gearbox 2 test report, Golden, CO: National Renewable Energy Laboratory, Jun. 2015. [31] S. Wan, L. Cheng, X. Sheng, “Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model,” Energies, Vol. 8, No. 7, pp. 6286-6301, Jun. 2015. [32] M. Tretton, M. Reha, M. Drunsic, M. Keim, Data collection for current U.S. wind energy projects: component costs, financing, operations, and maintenance, NREL, Jan. 2011. [33] M.N. Scheu, A. Kolios, T. Fischer, F. Brennan, ”Influence of statistical uncertainty of component reliability estimations on offshore wind farm availability,” Reliability Engineering & System Safety, Vol. 168, pp.28-39, Dec. 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7410 | - |
| dc.description.abstract | 本論文探討風機系統的可靠度設計,以及風機系統設置後之運轉維護策略,其中特別著重失效模式與影響性分析、失效樹分析、以及在適當可靠度要求下最小成本之運維等議題。本論文將風機系統拆分為基底與塔架、葉片、傳動、電力四個子系統。在失效模式與影響性分析裡,將各子系統分出許多組件,而組件又可再細分出多個零件。本研究首先依據物理原則,搭配國內外學者專家的經驗與建議,製作出前述子系統之失效模式與影響性分析表格,讓人得以快速看出哪些失效模式是屬於比較重要的模式,及爾後運維時需要特別注意的組件。在失效樹分析裡,本研究將四個子系統可能失效的情況以「頂層事件」來表示,而後參考國內外文獻,將導致子系統失效之潛在肇因細分出一些「中間事件」與「基本事件」。洞悉以上事件後,即可作出風機系統的失效樹圖,讓工程設計或爾後之運維人員快速看出每個子系統與基本事件的關聯性。本論文更依據以上建構之系統失效樹圖,搭配布林代數法則,定量分析各基本事件對風機系統失效的影響,據以探討基本事件的重要性。本論文最後所作運轉維護研究則是根據前述可靠度設計結果,在考量一些不確定及成本因素下,建構一套維修模擬程式。透過該模擬程式,可獲得風機系統與子系統可靠度、維修時間與維修成本間的關係,讓業界能依照自己制定的維修期間擬定各種運轉維護策略,並模擬在特定策略下之風機可靠度與維修成本。 | zh_TW |
| dc.description.abstract | This thesis discusses the reliability design of wind turbine system and the operation and maintenance strategy after a wind turbine is set up. With regard to the reliability design, failure mode and effect analysis, failure tree analysis, and several other methods are employed. As for the operation and maintenance strategy, a maintenance period resulting in the minimum cost under appropriate reliability requirement of a turbine is the major target. This thesis divides a wind turbine system into four subsystems namely foundation and tower, blade, drive, and an electrical subsystem. In the failure mode and effect analysis, each subsystem is divided into several assemblies; and an assembly consists of several components. Based on principles of physics and experiences and recommendations from experts, this study develops failure mode and effect analysis tables for the above mentioned subsystems, allowing people to understand quickly the importance of each failure mode and pay more attention to those critical failure modes during maintenance. In the failure tree analysis, this study considers possible failures of subsystems as top events. For a top event, its potential causes are identified and addressed to be intermediate and basic events subsequently. After understanding the above events, the failure tree diagram of a wind turbine system can be constructed. The result is helpful for engineers to know potential failures of subsystems and their causes. Based on the system’s failure tree diagram, this thesis also employs Boolean algebraic rule to analyze quantitatively the impact of each basic event on the failure of a wind turbine system and discusses the importance of each basic event. The operation and maintenance study conducted in this study is based on results of the reliability design. A simulation computer program for maintenance strategy is developed in consideration of parameter uncertainties as well as maintenance cost. Through the simulation program, the relationship between the reliability of a wind turbine system and its subsystems, the maintenance time, and the maintenance cost are obtained. The results allow people to find the maintenance cost as well as the wind turbine reliability for a selected operational maintenance strategy in which the maintenance period is emphasized. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:43:06Z (GMT). No. of bitstreams: 1 ntu-107-R05522504-1.pdf: 3490041 bytes, checksum: 9010750e551ac4d6021810e4f559cc5c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 1. 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文架構 4 2. 研究方法 6 2.1 可靠度基本理論 6 2.1.1 定義 6 2.1.2 連續機率分布 8 2.1.3 系統可靠度 11 2.2 失效模式與影響性分析 13 2.2.1 建構方式 13 2.3 失效樹分析 19 2.3.1 數學原理 20 2.3.2 建構方式 22 2.3.3 定性分析 25 2.3.4 失效樹與可靠度關係 27 2.3.5 定量分析 28 2.4 運轉維護策略分析 30 2.4.1 糾正性維修 31 2.4.2 預防性維修 31 3. 案例分析 33 3.1 FMEA製作 35 3.1.1 基底與塔架系統 35 3.1.2 葉片系統 40 3.1.3 傳動系統 45 3.1.4 電力系統 48 3.1.5 定量分析 53 3.1.6 定性分析 54 3.2 FTA製作 56 3.2.1 基底與塔架系統 57 3.2.2 葉片系統 58 3.2.3 傳動系統 60 3.2.4 電力系統 62 3.2.5 定量分析 64 4. 運轉維護策略 75 4.1 不確定性 75 4.2 假設條件 77 4.3 模擬分析 80 4.3.1 基底與塔架系統 80 4.3.2 葉片系統 80 4.3.3 傳動系統 81 4.3.4 電力系統 82 5. 結果討論 83 5.1 FMEA 83 5.2 FTA 83 5.3 運轉維護策略 84 6. 結論 89 參考文獻 90 | |
| dc.language.iso | zh-TW | |
| dc.title | 風機系統之可靠度設計與運轉維護策略研究 | zh_TW |
| dc.title | Reliability Design and Maintenance Strategy for Wind Turbine Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹魁元(Kuei-Yuan Chan),柴駿甫(Juin-Fu Chai) | |
| dc.subject.keyword | 可靠度,失效模式與影響性分析,失效樹分析,維護策略,維修成本, | zh_TW |
| dc.subject.keyword | reliability,failure mode and effect analysis,failure tree analysis,maintenance strategy,maintenance cost, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU201804239 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-11-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2028-12-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 此日期後於網路公開 2028-12-31 | 3.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
