請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74102完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信樹(Hsin-Shu Chen) | |
| dc.contributor.author | Kai-Jen Cheng | en |
| dc.contributor.author | 鄭凱壬 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:20:00Z | - |
| dc.date.available | 2024-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | [1] C. L. Kuo, S. C. Lin, and W. J. Wu, “Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting”, Smart Material and Structures, Vol. 25, 105016, 2016.
[2] D. Guyomar and M. Lallart, “Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation,” Micromachines, Vol.2, pp. 274-294, 2011. [3] G. K. Ottman, H. F. Hofmann, and G.A. Lesieutre, “Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode,” IEEE Transactions on Power Electronics, Vol.18, NO.2, Mar. 2003. [4] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, “Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing,” IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, vol.52, NO.4, 2005. [5] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, “Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction,” Journal of Intelligent Material Systems and Structures, Vol. 16, Oct. 2005. [6] Y. K. Ramadass, and A. P. Chandrakasan, “An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor,” IEEE Journal of Solid-State Circuits, Vol.45, NO. 1, Jan. 2010. [7] T. Hehn, F. Hagedorn, D. Maurath, D. Marinkovic, I. Kuehne, A. Frey, and Y. Manoli, “A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters,” IEEE Journal of Solid-State Circuits, Vol.47, NO. 9, Sep. 2012. [8] D. A. Sanchez, J. Leicht, E. Jodka, E. Fazel, and Y. Manoli, “A 4μW-to-1mW Parallel-SSHI Rectifier for Piezoelectric Energy Harvesting of Periodic and Shock Excitations with Inductor Sharing, Cold Start-up and up to 681% Power Extraction Improvement,” IEEE International Solid-State Circuits Conference (ISSCC), 2016: p. 366-367. [9] M. Lallart, Wen-Jong Wu, Yuchieh Hsieh, and Linjuan Yan, “Synchronous Inversion and Charge Extraction (SICE): A Hybrid Switching Interface for Efficient Vibrational Energy Harvesting,” Smart Mater. Struct. 26 115012 [10] G. Gautschi, 'Piezoelectric Sensors,' in Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers, ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 73-91. [11] S.-C. Lin, “High Performance Piezoelectric MEMS Generators based on Stainless Steel Substrate,” Doctoral dissertation, National Taiwan University, 2014. [12] M. Shim, J. Kim, J. Jeong, S. Park, and C. Kim, 'Self-Powered 30μW to 10 mW Piezoelectric Energy Harvesting System with 9.09 ms/V Maximum Power Point Tracking Time,' IEEE Journal of Solid-State Circuits, vol. 50, pp. 2367-2379, 2015. [13] J. Liang, 'Synchronized Bias-Flip Interface Circuits for Piezoelectric Energy Harvesting Enhancement: A General Model and Prospects,' Journal of Intelligent Material Systems and Structures, vol. 28, pp. 339-356, 2017. [14] E. Andrés Gomez-Casseres, S. Mario Arbulú, R. Juan Franco, Rubén Contreras, Jesús Martínez, “Comparison of passive rectifier circuits for energy harvesting applications”, 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) [15] B. Razavi, Design of Analog CMOS Integrated Circuits: McGraw-Hill Series in Electrical and Computer Engineering, 2001. [16] M. Ghovanloo and K. Najafi, “Fully integrated wideband high-current rectifier for inductively powered devices,” IEEE Journal of Solid-State Circuits, vol.39,no. 11, pp.1976-1984, 2004. [17] S. Xu, K.D.T. Ngo, T. Nishida, G.B. Chung, A. Sharma,” Low Frequency Pulsed Resonant Converter for Energy Harvesting,” IEEE Trans. Power Electron. 22(1), 63-68 ,2007. [18] Texas Instruments Corporation Datasheet, “TPS7A470x 36-V, 1-A, 4-µVRMS, RF LDO voltage regulator,” [19] Texas Instruments Corporation Datasheet, “TPS22860 ultra-low leakage load switch,” [20] Chroma Corporation Datasheet, “Programmable dc electronic load model 6310A series,” [21] D. Kwon and G. A. Rincon-Mora,” A Single-Inductor 0.35μm CMOS Energy-Investing Piezoelectric Harvester,” IEEE Journal of Solid-State Circuits, vol.49, no.10, 2014. [22] Y. K. Ramadass,” Energy Processing Circuit for Low-Power Applications.” [23] S. Du, Y. Jia, C. D. Do, and A. A. Seshia,” An Efficient SSHI Interface with Increased Input Range for Piezoelectric Energy Harvesting Under Variable Conditions,” IEEE Journal of Solid-State Circuits, vol.51, no.11, 2016. [24] C. Peter, D. Spreemann, M. Ortmanns and Y. Manoli,” A CMOS Integrated Voltage and Power Efficient AC/DC Converter for Energy Harvesting Applications,” IOP Journal of Micromechanics and Microengineering, 2008. [25] S. Suman, K. G. Sharma, and P. K. Ghosh, 'Analysis and Design of Current Starved Ring VCO,' International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016. [26] Shun-Chiu Lin and Wen-Jong Wu, “Piezoelectric micro energy harvesters based on stainless steel substrates,” Smart Materials and Structures, 2013. 22(4): p. 045016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74102 | - |
| dc.description.abstract | 隨著物聯網概念的發展,無線設備被廣泛使用,而為這些設備供電則是一個問題。如果使用電池,我們必須每隔一段時間更換一次電池。此外,廢棄的電池也會造成環境汙染。因此,我們從環境能源中收集能量來延長電池壽命,最終實現無電池IOT設備的目標。在室內,環境的振動源提供最高的功率密度,因此,我們使用壓電能量擷取系統來收集這些能量。
同步電感式能量擷取電路 (SSHI)和同步電荷擷取電路(SECE)是兩種常見的的介面電路。與標準介面電路相比,SSHI具有高功率增益的優點,而功率增益取決於負載阻抗。而SECE具有中等的功率增益,但功率增益完全獨立於負載阻抗。而本論文提出用於壓電能量擷取的同步反相和電荷提取(SICE)介面電路,結合SSHI和SECE電路,在給定的反轉次數下,反轉達到峰值的壓電電壓(偏置翻轉動作),然後通過SECE電路擷取總能量。因此,可以同時獲得高功率增益和負載獨立的優點。 此晶片使用台積電0.25μm HV-CMOS製程來實現。根據量測結果,此介面電路在壓電電壓峰值為10 V且不翻轉的情況,擷取的功率為130μW,此時的功率增益為290%;而在壓電電壓峰值為2.8 V且反轉次數為3時,擷取功率為22μW,此時的功率增益為628%。 | zh_TW |
| dc.description.abstract | With the development of the Internet of Things, wireless devices are widely used, and powering these devices is a problem. If using a battery, we must replace the battery at regular intervals. In addition, discarded batteries can also cause environmental pollution. Therefore, we collect energy from environmental energy to extend battery life and ultimately achieve the goal of battery-free IOT equipment. Indoors, the ambient vibration source provides the highest power density, so we use a piezoelectric energy harvesting system to collect this energy.
Synchronized switch harvesting on inductor (SSHI) and synchronous electric charge extraction (SECE) are two common interface circuits. Compared to standard interface circuits, SSHI has the advantage of high power gain, while power gain depends on loading impedance. In contrast, the SECE has a medium power gain, but the power gain is independent of the loading impedance. This thesis proposes a synchronous inversion and charge extraction (SICE) interface circuit for piezoelectric energy harvesting, combined with the SSHI and the SECE circuits, under the given number of inversions, the peak voltage of piezoelectric voltage is reversed (bias flip action), and then the total energy is extracted through the SECE circuit. Therefore, the advantages of high power gain and load independence can be obtained at the same time. According to the measurement results, when the peak of the piezoelectric voltage is 10 V and the number of inversions is 0, the extraction power is 130μW, and the power gain is 628%; When the peak of the piezoelectric voltage is 2.8 V and the number of inversions is 3, the extraction power is 22μW and the power gain is 628%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:20:00Z (GMT). No. of bitstreams: 1 ntu-108-R05943124-1.pdf: 4616769 bytes, checksum: 3011f7c92898a6cd024b1c01f66274ba (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Table Content
致謝 II 摘要 III Abstract IV List of Figures X List of Tables XIV Chapter 1 - Introduction 1 1.1 Motivation 3 1.2 Thesis Overview 4 Chapter 2 - Piezoelectric Energy Harvesting System and Interface circuit 6 2.1 Piezoelectric Harvester and Modeling 7 2.1.1 Introduction to Piezoelectric Effect 7 2.1.2 Piezoelectric Harvester 8 2.1.3 Equivalent Circuit Modeling of Piezoelectric Harvesters 11 2.2 Standard Energy Harvesting Interface 15 2.2.1 Circuit Architecture and Operation 15 2.2.2 Calculation of Harvested Power 18 2.2.3 Maximum Power Point Tracking 20 2.3 Synchronized Switch Harvesting on Inductor 22 2.3.1 Circuit Architecture and Operation 22 2.3.2 Calculation of Harvested Power 24 2.4 Synchronous Electric Charge Extraction 29 2.4.1 Circuit Architecture and Operation 29 2.4.2 Calculation of Harvested Power 31 2.5 Synchronous Inversion and Charge Extraction 33 2.5.1 Circuit Architecture and Operation 33 2.5.2 Calculation of Harvested Power 36 2.6 Comparison of Different Interface Circuits 40 Chapter 3 - Proposed Synchronous Inversion and Charge Extraction (SICE) 43 3.1 Proposed SICE Architecture 44 3.2 Design Goals 46 3.3 Operations 47 3.4 Power Switches 52 3.4.1 Bulk Regulation 52 3.4.2 Power Stage 54 3.4.3 Level Shifter 58 3.4.4 MOSFET Drivers 60 3.5 Power Switch Timing 62 3.5.1 Peak Detector 63 3.5.2 Tunable Pulse Generator 65 3.5.3 Reverse Current Detector (RCD) 67 3.6 Controller Blocks 70 3.6.1 High Voltage Decoupling Circuit 70 3.6.2 Ring Oscillator 71 3.7 Simulation Results 72 3.7.1 Full-Chip Simulation 72 3.7.2 Summary Table 78 Chapter 4 - Measurement Results 79 4.1 Experimental Setup 79 4.1.1 The Layout and Package 79 4.1.2 Experimental Setup 81 4.2 Experimental Results 82 4.3 Performance Summary 92 Chapter 5 - Conclusion and Future Work 95 5.1 Conclusion 95 5.2 Future Work 96 Reference 98 | |
| dc.language.iso | en | |
| dc.subject | 同步電荷提取介面電路 | zh_TW |
| dc.subject | 壓電能量擷取系統 | zh_TW |
| dc.subject | 物聯網 | zh_TW |
| dc.subject | 同步反相和電荷提取介面電路 | zh_TW |
| dc.subject | Internet of Things | en |
| dc.subject | Piezoelectric energy harvesting system | en |
| dc.subject | SECE | en |
| dc.subject | SICE | en |
| dc.title | 一個用於壓電能量擷取系統的同步反相和電荷提取介面電路 | zh_TW |
| dc.title | A Synchronous Inversion and Charge Extraction (SICE) Interface Circuit for Piezoelectric Energy Harvesting | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文中(Wen-Jong Wu),陳景然(Ching-Jim Chen) | |
| dc.subject.keyword | 物聯網,壓電能量擷取系統,同步電荷提取介面電路,同步反相和電荷提取介面電路, | zh_TW |
| dc.subject.keyword | Internet of Things,Piezoelectric energy harvesting system,SECE,SICE, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201903480 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
