Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74041
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor席行正
dc.contributor.authorChi Chenen
dc.contributor.author陳祺zh_TW
dc.date.accessioned2021-06-17T08:17:45Z-
dc.date.available2026-08-13
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citationAiken, G. R., Heileen, H. K., and Ryan, J. N. (2011). Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids: ACS Publications.
Amyot, M., Gill, G. A., and Morel, F. M. (1997). Production and loss of dissolved gaseous mercury in coastal seawater. Environmental Science & Technology, 31(12), 3606-3611.
Anishinabek, A. N., Rudd, J., Harris, R., and Sellers, P. (2016). Advice on Mercury Remediation Options for the Wabigoon-English River System Final Report.
Asasian, N., Kaghazchi, T., and Soleimani, M. (2012). Elimination of mercury by adsorption onto activated carbon prepared from the biomass material. Journal of Industrial and Engineering Chemistry, 18(1), 283-289.
Bailey, L. T., Mitchell, C. P., Engstrom, D. R., Berndt, M. E., Wasik, J. K. C., and Johnson, N. W. (2017). Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. Science of the Total Environment, 580, 1197-1204.
Bansal, R. C., and Goyal, M. (2005). Activated carbon adsorption: CRC press.
Bao, J., Zheng, H., Tufail, H., Irshad, S., and Du, J. (2018). Adsorption-assisted decontamination of Hg (ii) from aqueous solution by multi-functionalized corncob-derived biochar. RSC Advances, 8(67), 38425-38435.
Barton, S., Evans, M., Halliop, E., and MacDonald, J. (1997). Acidic and basic sites on the surface of porous carbon. Carbon, 35(9), 1361-1366.
aBenoit, J. M., Mason, R. P., and Gilmour, C. C. (1999). Estimation of mercury‐sulfide speciation in sediment pore waters using octanol—water partitioning and implications for availability to methylating bacteria. Environmental Toxicology and Chemistry: An International Journal, 18(10), 2138-2141.
bBenoit, J. M., Gilmour, C. C., Mason, R. P., and Heyes, A. (1999). Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology, 33(6), 951-957.
Benoit, J., Mason, R. P., Gilmour, C. C., and Aiken, G. R. (2001). Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades. Geochimica et cosmochimica acta, 65(24), 4445-4451.
Benoit, J., Gilmour, C. C., Heyes, A., Mason, R., and Miller, C. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. Biogeochemistry of environmentally important trace elements. American Chemical Society Symposium Series, 835, 262−297.
Bigham, G. N., Murray, K. J., Masue‐Slowey, Y., and Henry, E. A. (2017). Biogeochemical controls on methylmercury in soils and sediments: implications for site management. Integrated environmental assessment and management, 13(2), 249-263.
Boutsika, L. G., Karapanagioti, H. K., and Manariotis, I. D. (2017). Effect of chloride and nitrate salts on Hg (II) sorption by raw and pyrolyzed malt spent rootlets. Journal of Chemical Technology & Biotechnology, 92(8), 1912-1918.
Bradberry, S. (2007). Mercury. Medicine, 35(12), 632.
Bundschuh, M., Zubrod, J. P., Seitz, F., Newman, M. C., and Schulz, R. (2011). Mercury-contaminated sediments affect amphipod feeding. Archives of Environmental Contamination and Toxicology, 60(3), 437-443.
Carocci, A., Rovito, N., Sinicropi, M. S., and Genchi, G. (2014). Mercury toxicity and neurodegenerative effects. In Reviews of environmental contamination and toxicology, Springer, Cham, 1-18.
aCardoso, P., D’Ambrosio, M., Marques, S., Azeiteiro, U., Coelho, J., and Pereira, E. (2013). The effects of mercury on the dynamics of the peracarida community in a temperate coastal lagoon (Ria de Aveiro, Portugal). Marine pollution bulletin, 72(1), 188-196.
bCardoso, P., Sousa, E., Matos, P., Henriques, B., Pereira, E., Duarte, A., and Pardal, M. (2013). Impact of mercury contamination on the population dynamics of Peringia ulvae (Gastropoda): implications on metal transfer through the trophic web. Estuarine, Coastal and Shelf Science, 129, 189-197.
Cecen, F. (2014). Activated carbon. Retrieved from https://www.researchgate.net/publication/263062486_Activated_Carbon
Chakraborty, P., Sarkar, A., Vudamala, K., Naik, R., and Nath, B. N. (2015). Organic matter—a key factor in controlling mercury distribution in estuarine sediment. Marine Chemistry, 173, 302-309.
Chakraborty, P., Babu, P. R., Vudamala, K., Ramteke, D., and Chennuri, K. (2014). Mercury speciation in coastal sediments from the central east coast of India by modified BCR method. Marine pollution bulletin, 81(1), 282-288.
Chen, C., Liu, S., Gao, Y., and Liu, Y. (2014). Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry. The Scientific World Journal, 2014.
Chen, Y., Yin, Y., Shi, J., Liu, G., Hu, L., Liu, J., Cai, Y., and Jiang, G. (2017). Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury. Critical Reviews in Environmental Science and Technology, 47(24), 2415-2447.
Chiasson-Gould, S. A., Blais, J. M., and Poulain, A. J. (2014). Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environmental Science & Technology, 48(6), 3153-3161.
Chibunda, R., Pereka, A., and Tungaraza, C. (2008). Effects of sediment contamination by artisanal gold mining on Chironomus riparius in Mabubi River, Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 33(8-13), 738-743.
Clarkson, T. W. (1997). The toxicology of mercury. Critical reviews in clinical laboratory sciences, 34(4), 369-403.
Clarkson, T. W. (2002). The three modern faces of mercury. Environmental health perspectives, 110, 11-23.
Cesário, R., Mota, A. M., Caetano, M., Nogueira, M., and Canário, J. (2018). Mercury and methylmercury transport and fate in the water column of Tagus estuary (Portugal). Marine pollution bulletin, 127, 235-250.
Cornelissen, G., Elmquist Kruså, M., Breedveld, G. D., Eek, E., Oen, A. M., Arp, H. P. H., Raymond, C., Samuelsson, G., Hedman, J. E., and Stokland, Ø. (2011). Remediation of contaminated marine sediment using thin-layer capping with activated carbon —A field experiment in Trondheim Harbor, Norway. Environmental Science & Technology, 45(14), 6110-6116.
Conder, J. M., Fuchsman, P. C., Grover, M. M., Magar, V. S., and Henning, M. H. (2015). Critical review of mercury sediment quality values for the protection of benthic invertebrates. Environmental Toxicology and Chemistry, 34(1), 6-21.
D’Ambrosio, M., Marques, S., Azeiteiro, U., Pardal, M., Pereira, E., Duarte, A., and Cardoso, P. (2013). Mercury bioaccumulation and the population dynamics of Mesopodopsis slabberi (Crustacea: Mysidacea) along a mercury contamination gradient. Ecotoxicology, 22(8), 1278-1288.
Deonarine, A., and Heileen, H. K. (2009). Precipitation of mercuric sulfide nanoparticles in NOM-containing water: Implications for the natural environment. Environmental Science & Technology, 43(7), 2368-2373.
Dias, J. M., Alvim-Ferraz, M. C., Almeida, M. F., Rivera-Utrilla, J., and Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of environmental management, 85(4), 833-846.
Dong, X., Ma, L. Q., Zhu, Y., Li, Y., and Gu, B. (2013). Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry. Environmental Science & Technology, 47(21), 12156-12164.
Dyrssen, D., and Wedborg, M. (1991). The sulphur-mercury (II) system in natural waters. Water Air & Soil Pollution, 56(1), 507-519.
EEA. (2018). The global mercury cycle. Retrieved from https://www.eea.europa.eu/media/infographics/the-global-mercury-cycle.
Findlay, S. E., and Parr, T. B. (2017). Dissolved organic matter Methods in Stream Ecology, Elsevier, 21-36.
Food, Korea. (2007). Hazardous substances-21 series: what is methylmercury in food? 1-68.
Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47(20), 11810-11820.
Ghosh, U., Luthy, R. G., Cornelissen, G., Werner, D., and Menzie, C. A. (2011). In-situ sorbent amendments: a new direction in contaminated sediment management. Environmental Science & Technology, 45(4), 1163-1168.
Graham, A. M., Aiken, G. R., and Gilmour, C. C. (2012). Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environmental Science & Technology, 46(5), 2715-2723.
Graham, A. M., Cameron-Burr, K. T., Hajic, H. A., Lee, C., Msekela, D., and Gilmour, C. C. (2017). Sulfurization of dissolved organic matter increases hg–sulfide–dissolved organic matter bioavailability to a Hg-methylating bacterium. Environmental Science & Technology, 51(16), 9080-9088.
Gonzalez-Raymat, H., Liu, G., Liriano, C., Li, Y., Yin, Y., Shi, J., Cai, Y. (2017). Elemental mercury: its unique properties affect its behavior and fate in the environment. Environmental pollution, 229, 69-86.
Hadi, P., To, M. H., Hui, C. W., Lin, C. S. K., and McKay, G. (2015). Aqueous mercury adsorption by activated carbons. Water research, 73, 37-55.
Hammerschmidt, C. R., and Fitzgerald, W. F. (2004). Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science & Technology, 38(5), 1487-1495.
Hammerschmidt, C. R., Fitzgerald, W. F., Lamborg, C. H., Balcom, P. H., and Visscher, P. T. (2004). Biogeochemistry of methylmercury in sediments of Long Island Sound. Marine Chemistry, 90(1-4), 31-52.
Heyes, A., Miller, C., and Mason, R. P. (2004). Mercury and methylmercury in Hudson River sediment: impact of tidal resuspension on partitioning and methylation. Marine Chemistry, 90(1-4), 75-89.
Ho, Y. S., and McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
Hong, Y.S., Kim, Y.M., and Lee, K.E. (2012). Methylmercury exposure and health effects. Journal of preventive medicine and public health, 45(6), 353-363.
Hosokawa, Y. (1993). Remediation work for mercury contaminated bay–experiences of Minamata Bay project, Japan. Water Science and Technology, 28(8-9), 339-348.
Hudson, R. J., Gherini, S. A., Watras, C. J., and Porcella, D. B. (1994). Modeling the biogeochemical cycle of mercury in lakes: The mercury cycling model (MCM) and its application to the MTL study lakes. Mercury pollution: integration and synthesis, 473-523.
Hurley, J. P., Krabbenhoft, D. P., Babiarz, C. L., and Andren, A. W. (1994). Cycling of mercury across the sediment-water interface in seepage lakes. Advances in Chemistry[ADV. CHEM. SER.], Washington, DC, 425–449.
Jonsson, S., Skyllberg, U., Nilsson, M. B., Westlund, P.O., Shchukarev, A., Lundberg, E., and Björn, E. (2012). Mercury methylation rates for geochemically relevant HgII species in sediments. Environmental Science & Technology, 46(21), 11653-11659.
Kadirvelu, K. (1998). Preparation and characterization of coirpith carbon and its utilization in the treatment of metal bearing wastewaters.
Kadirvelu, K., Kavipriya, M., Karthika, C., Vennilamani, N., and Pattabhi, S. (2004). Mercury (II) adsorption by activated carbon made from sago waste. Carbon, 42(4), 745-752.
Kadirvelu, K., Faur-Brasquet, C., and Cloirec, P. L. (2000). Removal of Cu (II), Pb (II), and Ni (II) by adsorption onto activated carbon cloths. Langmuir, 16(22), 8404-8409.
aKim, D., Kim, G., Park, K., Kang, T., Lee, J., and Nam, S. (2006). A study on exposure and health effect of mercury (II). Incheon: National Institute of Environmental Research, 1-115.
bKim, E. H., Mason, R. P., Porter, E. T., and Soulen, H. L. (2006). The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: A mesocosm study. Marine Chemistry, 102(3-4), 300-315.
Krabbenhoft, D. P., and Sunderland, E. M. (2013). Global Change and Mercury. Science, 341(6153), 1457-1458.
Kobal, A. B., Horvat, M., Prezelj, M., Briški, A. S., Krsnik, M., Dizdarevič, T., Arnerič, N. (2004). The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. Journal of Trace Elements in Medicine and Biology, 17(4), 261-274.
Lee, S., Roh, Y., and Kim, K.-W. (2019). Influence of chloride ions on the reduction of mercury species in the presence of dissolved organic matter. Environmental geochemistry and health, 41(1), 71-79.
Li, Z., Wu, L., Liu, H., Lan, H., and Qu, J. (2013). Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chemical Engineering Journal, 228, 925-934.
Lin, C., Singhasuk, P., and Pehkonen, S. (2012). Atmospheric chemistry of mercury. Environmental chemistry and toxicology of mercury, 4, 113-153.
Lindeman, R. L. (1942). The trophic‐dynamic aspect of ecology. Ecology, 23(4), 399-417.
Liu, S., Chen, X., Chen, X., Liu, Z., and Wang, H. (2007). Activated carbon with excellent chromium (VI) adsorption performance prepared by acid–base surface modification. Journal of hazardous materials, 141(1), 315-319.
Lu, C., Xu, S., and Liu, C. (2010). The role of K2CO3 during the chemical activation of petroleum coke with KOH. Journal of Analytical and Applied pyrolysis, 87(2), 282-287
Lu, X., Jiang, J., Sun, K., Wang, J., and Zhang, Y. (2014). Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. Marine pollution bulletin, 78(1-2), 69-76.
Lu, X., Jiang, J., Sun, K., Xie, X., and Hu, Y. (2012). Surface modification, characterization and adsorptive properties of a coconut activated carbon. Applied Surface Science, 258(20), 8247-8252.
Luo, H. W., Yin, X., Jubb, A. M., Chen, H., Lu, X., Zhang, W., Lin, H., Yu, H.Q., Liang, L., Sheng, G.P., and Gu,B. (2017). Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environmental pollution, 220, 1359-1365.
Magalhães, M. E. A., and Tubino, M. (1995). A possible path for mercury in biological systems: the oxidation of metallic mercury by molecular oxygen in aqueous solutions. Science of the Total Environment, 170(3), 229-239.
Manceau, A., Lemouchi, C., Enescu, M., Gaillot, A.C., Lanson, M., Magnin, V., Glatzel, P., Poulin, B. A., Ryan, J. N., and Aiken, G. R. (2015). Formation of mercury sulfide from Hg (II)–thiolate complexes in natural organic matter. Environmental Science & Technology, 49(16), 9787-9796.
Marsh, H., and Reinoso, F. R. (2006). Activated carbon. Elsevier.
Martınez, M., Callejas, M., Benito, A., Cochet, M., Seeger, T., Anson, A., Schreiber, J., Gordon, C., Marhic, C., and Chauvet, O. (2003). Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation. Carbon, 41(12), 2247-2256.
Mason, R. P., and Lawrence, A. L. (1999). Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environmental Toxicology and Chemistry, 18(11), 2438-2447.
Mazrui, N. M., Seelen, E., King'ondu, C. K., Thota, S., Awino, J., Rouge, J., Mason, R. P. (2018). The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter. Environmental Science: Processes & Impacts, 20(4), 642-656.
Mazrui, N. M., Jonsson, S., Thota, S., Zhao, J., and Mason, R. P. (2016). Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochimica et cosmochimica acta, 194, 153-162.
Milani, D., and Grapentine, L. (2004). The application of BEAST sediment quality guidelines to sediment in Hamilton Harbour. Final Draft, NWRI Contribution (in preparation), Burlington, Ontario.
Morel, F. M., Kraepiel, A. M., and Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual review of ecology and systematics, 29(1), 543-566.
Naimo, T. J., Wiener, J. G., Cope, W. G., and Bloom, N. S. (2000). Bioavailability of sediment-associated mercury to Hexagenia mayflies in a contaminated floodplain river. Canadian journal of fisheries and aquatic sciences, 57(5), 1092-1102.
Namasivayam, C., and Kadirvelu, K. (1999). Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith. Carbon, 37(1), 79-84.
Nunes, M., Coelho, J., Cardoso, P., Pereira, M., Duarte, A., and Pardal, M. (2008). The macrobenthic community along a mercury contamination in a temperate estuarine system (Ria de Aveiro, Portugal). Science of the Total Environment, 405(1-3), 186-194.
Ofomaja, A. E. (2010). Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust. Bioresource technology, 101(15), 5868-5876.
Oh, Y. J., Yoo, J. J., Kim, Y. I., Yoon, J. K., Yoon, H. N., Kim, J. H., and Park, S. B. (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochimica Acta, 116, 118-128.
Park, J. D., and Zheng, W. (2012). Human exposure and health effects of inorganic and elemental mercury. Journal of preventive medicine and public health, 45(6), 344
Parks, G. A., and Bruyn, P. D. (1962). The Zero Point of Charge of Oxides1. The Journal of Physical Chemistry, 66(6), 967-973.
Pham, A. L.T., Morris, A., Zhang, T., Ticknor, J., Levard, C., and Heileen, H. K. (2014). Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: Structural properties, aggregation, and biotransformation. Geochimica et cosmochimica acta, 133, 204-215.
Poulin, B. A., Gerbig, C. A., Kim, C. S., Stegemeier, J. P., Ryan, J. N., and Aiken, G. R. (2017). Effects of sulfide concentration and dissolved organic matter characteristics on the structure of nanocolloidal metacinnabar. Environmental Science & Technology, 51(22), 13133-13142.
Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Sjöberg, S., and Wanner, H. (2005). Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+–Cl–, OH–, CO32–, SO42–, and PO43–aqueous systems (IUPAC Technical Report). Pure and applied chemistry, 77(4), 739-800.
Quinlivan, P. A., Li, L., and Knappe, D. R. (2005). Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water research, 39(8), 1663-1673.
Ranganathan, K. (2003). Adsorption of Hg (II) ions from aqueous chloride solutions using powdered activated carbons. Carbon, 41(5), 1087-1092.
Randall, P. M., and Chattopadhyay, S. (2013). Mercury contaminated sediment sites—An evaluation of remedial options. Environmental research, 125, 131-149.
Ravichandran, M., Aiken, G. R., Ryan, J. N., and Reddy, M. M. (1999). Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environmental Science & Technology, 33(9), 1418-1423.
Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55(3), 319-331.
Rickard, D., Mussmann, M., and Steadman, J. A. (2017). Sedimentary sulfides. Elements, 13(2), 117-122.
Robles, I., Bustos, E., and Lakatos, J. (2016). Adsorption study of mercury on lignite in the presence of different anions. Sustainable Environment Research, 26(3), 136-141.
Saha, B., Tai, M., and Streat, M. (2001). Study of activated carbon after oxidation and subsequent treatment: characterization. Process safety and environmental protection, 79(4), 211-217.
Selin, N. E. (2011). Science and strategies to reduce mercury risks: a critical review. Journal of environmental monitoring, 13(9), 2389-2399.
ShamsiJazeyi, H., and Kaghazchi, T. (2014). Simultaneous activation/sulfurization method for production of sulfurized activated carbons: characterization and Hg (II) adsorption capacity. Water Science and Technology, 69(3), 546-552.
Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619.
Singh, J., Huang, P., Hammer, U., and Liaw, W. (1996). Influence of citric acid and glycine on the adsorption of mercury (II) by kaolinite under various pH conditions. Clays and Clay Minerals, 44(1), 41-48.
Singh, V. and Kumar†, P. (2011) Design of nanostructured tamarind seed kernel polysaccharide-silica hybrids for mercury (II) removal. Separation Science and Technology, 46(5), 825-838.
Slowey, A. J. (2010). Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter. Geochimica et cosmochimica acta, 74(16), 4693-4708.
Song, Y., Jiang, T., Liem-Nguyen, V., Sparrman, T., Björn, E., and Skyllberg, U. (2018). Thermodynamics of Hg (II) Bonding to Thiol Groups in Suwannee River Natural Organic Matter Resolved by Competitive Ligand Exchange, Hg LIII-Edge EXAFS and 1H NMR Spectroscopy. Environmental Science & Technology, 52(15), 8292-8301.
Stoichev, T., Amouroux, D., Wasserman, J., Point, D., De Diego, A., Bareille, G., and Donard, O. (2004). Dynamics of mercury species in surface sediments of a macrotidal estuarine–coastal system (Adour River, Bay of Biscay). Estuarine, Coastal and Shelf Science, 59(3), 511-521.
Stubner, S., Wind, T. and Conrad, R. (1998) Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Systematic and Applied Microbiology, 21(4), 569-578.
Suchanek, T. H., Eagles-Smith, C. A., Slotton, D. G., Harner, E. J., Adam, D. P., Colwell, A. E., Anderson, N. L., and Woodward, D. L. (2008). Mine‐derived mercury: Effects on lower trophic species in Clear Lake, California. Ecological Applications, 18(sp8), A158-A176.
Sun, G., Sommar, J., Feng, X., Lin, C.-J., Ge, M., Wang, W., Shang, L. (2016). Mass-dependent and-independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl and Br. Environmental Science & Technology, 50(17), 9232-9241.
Tan, Y. H., Davis, J. A., Fujikawa, K., Ganesh, N. V., Demchenko, A. V., and Stine, K. J. (2012). Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. Journal of materials chemistry, 22(14), 6733-6745.
Ting, Y., Chen, C., Ch’ng, B. L., Wang, Y. L., and Hsi, H. C. (2018). Using raw and sulfur-impregnated activated carbon as active cap for leaching inhibition of mercury and methylmercury from contaminated sediment. Journal of hazardous materials, 354, 116-124.
Thoma, G. J., Reible, D. D., Valsaraj, K. T., and Thibodeaux, L. J. (1993). Efficiency of capping contaminated sediments in situ. 2. Mathematics of diffusion-adsorption in the capping layer. Environmental Science & Technology, 27(12), 2412-2419.
Thurman, E. M. (2012). Organic geochemistry of natural waters (Vol. 2): Springer Science & Business Media
UNEP. (2013). Global Mercury Assessment 2013. Retrieved from https://www.zaragoza.es/contenidos/medioambiente/onu/942-eng.pdf
Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., and Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental pollution, 131(2), 323-336.
Wang, J., Deng, B., Wang, X., and Zheng, J. (2009). Adsorption of aqueous Hg (II) by sulfur-impregnated activated carbon. Environmental Engineering Science, 26(12), 1693-1699.
Weber, W. J., and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.
Windham‐Myers, L., Marvin‐Dipasquale, M., Krabbenhoft, D. P., Agee, J. L., Cox, M. H., Heredia‐Middleton, P., Coates, C. and Kakouros, E. (2009). Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment. Journal of Geophysical Research: Biogeosciences, 114(G2).
Winger, P. V., Lasier, P. J., and Geitner, H. (1993). Toxicity of sediments and pore water from Brunswick Estuary, Georgia. Archives of Environmental Contamination and Toxicology, 25(3), 371-376.
Xia, K., Weesner, F., Bleam, W., Helmke, P., Bloom, P., and Skyllberg, U. (1998). XANES studies of oxidation states of sulfur in aquatic and soil humic substances. Soil Science Society of America Journal, 62(5), 1240-1246.
Yamamoto, M. (1996). Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments. Chemosphere, 32(6), 1217-1224.
Zhang, C., Z, M. Y., Zeng, G. M., Yu, Z. G., Cui, F., Y, Z. Z., and Shen, L. Q. (2016). Active capping technology: a new environmental remediation of contaminated sediment. Environmental Science and Pollution Research, 23(5), 4370-4386.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74041-
dc.description.abstract近年來,汞汙染底泥對於水體環境造成嚴重的危害與影響,而使用薄層覆蓋法被許多研究發現能有效抑制汞從底泥中溶出,並被認為是一個較適當且具彈性的整治方法。活性碳被許多相關研究報導具有有效吸附水中的二價汞之能力,是相當有潛力的覆蓋材料。然而環境因子像是二價硫、氯離子以及溶解性有機物往往能影響汞在水體環境中的宿命,而環境因子對於活性碳吸附汞行為之影響卻鮮少被探討。因此本研究之目標為釐清汞在存在二價硫、氯離子以及溶解性有機物情況下被活性碳吸附之機制與影響。
本研究主要分為兩個部分,其一為活性碳吸附汞之表現,另一部分為汞分布於各相之探討。研究發現,二價硫存在下活性碳具有最高的吸附反應速率,次之為氯離子存在,DOM存在條件下則最低。在動力模式模擬部分,添加氯離子以及DOM下,活性碳吸附汞之行為以直接吸附Hg-Cl和Hg-DOM複合物為主,並以擴散為速率限制步驟。添加二價硫則以偏向擬二階動力模式去除水中溶解態之汞。在汞去除率方面,添加氯離子範圍在0‒400 mM下,去除率皆在落在92.1‒95.2%。添加二價硫(2‒20 μM)的情況下,汞去除率則落在65‒75%,其中液相顆粒汞的形成貢獻23.6‒28.7%的去除率,而約有30%的汞是以凡德瓦力吸附在活性碳上。添加DOM (0.25‒20 mg-C L-1)的情形下,隨著DOM濃度上升,溶解態的汞也隨之提升了30.6%,並且同時可看到活性碳相上的汞減少46.8%。綜觀而言,氯離子的存在提升了活性碳的吸附量,然而二價硫與DOM皆對汞之吸附造成負面影響,這是未來將活性碳應用在薄層覆蓋法上必須要克服的重要議題。
zh_TW
dc.description.abstractMercury-contaminant sediments have posed a serious threat to aquatic ecosystems. Using thin layer capping to reduce mercury (Hg) released from contaminated sediment is a feasible and durable remediation approach. Activated carbon (AC) has been reported as an effective adsorbent to capture Hg. However, there are various environmental factors such as sulfide, chloride and dissolved organic matter (DOM) that could significantly affect the Hg fate in the aquatic system. The main objective of this research is thus to clarify the Hg adsorption mechanism by AC with the presence of sulfide, DOM, and chloride.
The lab-scale batch experiments can be divided into two parts: (1) AC adsorption performance and (2) Hg distribution test by operational definition method. The rate of Hg adsorption on AC was various in the presence of sulfide, chloride, and DOM (from fast to slow). Hg adsorption might be directly bonded on AC with Hg-Cl and Hg-DOM complexes and mainly controlled by intraparticle diffusion. In contrast, “Hg+S” results was shown better fitted to pseudo-second order model. The Hg removal efficiency was (92.1‒95.2%) in the presence of chloride (0‒400 mM). The Hg removal efficiency was around 65‒75% in the “Hg+S” condition. Among removal of Hg, 23.6‒28.7% of Hg was formed into aqueous-phase particles and around 30% of Hg was adsorbed on AC by Van der Wall's force under sulfide concentration (2‒20 μM). Increasing DOM concentration resulted in more dissolved phase of Hg in the “Hg+DOM” condition. The proportion of “dissolved Hg” increased 30.6% by increasing DOM concentration from 0.25 to 20 mg-C L-1. Simultaneously, the proportion of “Hg in AC” decreased by 46.8%. Overall, the presence of chloride increases the Hg adsorption on AC. However, the presence sulfide and DOM causes a negative effect that should be concerned in future application.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:17:45Z (GMT). No. of bitstreams: 1
ntu-108-R06541114-1.pdf: 3177026 bytes, checksum: d58c11bdd100347d4dc780d40aa152d0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsChapter 1. Introduction 1
1.1 Motivation 1
1.2 Research objectives 2
Chapter 2. Literature Review 4
2.1 Mercury 4
2.1.1 Mercury properties and chemical forms 4
2.1.2 Mercury sources and global cycles 5
2.1.3 The behavior of mercury in sediment 7
2.2 Factors that affect mercury distribution in aqueous system 10
2.2.1 Chloride ions 10
2.2.2 Sulfide 12
2.2.3 Dissolved organic matter 14
2.3 Remediation of mercury contaminated sediment 16
2.3.1 Traditional remediation of Hg contaminated sediment 18
2.3.2 Thin layer capping 19
2.4 Activated carbon 23
2.4.1 Preparation of activated carbon 23
2.4.2 Physical and chemical properties of activated carbon 24
2.4.3 Mercury adsorption on activated carbon 25
Chapter 3. Materials and methods 27
3.1 Experimental design 27
3.2 Experimental chemical reagents, equipment, and analytical instruments 29
3.2.1 Chemical reagents 29
3.2.2 Experimental equipment 30
3.2.3 Analytical instruments 32
3.3 Physicochemical properties of AC 34
3.3.1 Specific surface area, pore volumes, and pore distribution 34
3.3.2 Elemental analyzer (EA) 35
3.3.3 Scanning electron microscopy (SEM) 35
3.3.4 Zeta potential analyzer 36
3.3.5 X-ray photoelectron spectra (XPS) 36
3.4 Batch experiments of Hg adsorption 36
3.4.1 Preliminary work of solution preparation 38
3.4.2 AC adsorption performance 38
3.4.3 Hg distribution test 41
3.5 Sample analysis method 44
3.5.1 Cold vapor atomic fluorescence spectrophotometer (CVAFS) 44
3.5.2 Total organic carbon (TOC) 45
3.5.3 UV-Vis Spectrophotometer 45
Chapter 4. Results and discussion 47
4.1 Physicochemical properties of AC 47
4.1.1 Elemental analysis (EA) 47
4.1.2 Specific surface area, pore volumes, and pore distribution 48
4.1.3 XPS analysis 50
4.1.4 Zeta potential of AC 52
4.2 AC performance 53
4.2.1 Effect of dosage 53
4.2.2 Hg adsorption kinetic models 55
4.2.3 Preliminary adsorption capacity comparison 62
4.3 Hg distribution test 64
4.3.1 Hg+Cl 65
4.3.2 Hg+S 70
4.3.3 Hg+DOM 74
Chapter 5. Conclusions and suggestions 78
5.1 Conclusions 78
5.2 Suggestions 80
References 81
dc.language.isoen
dc.title二價硫、氯離子與溶解性有機物對活性碳吸附水中二價汞之影響zh_TW
dc.titleInfluence of Sulfide, Chloride and Dissolved Organic Matter on Mercury Adsorption by Activated Carbon in Aqueous Systemen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林居慶,范致豪,許正一
dc.subject.keyword汞,活性碳,氯離子,二價硫,溶解性有機物,zh_TW
dc.subject.keywordmercury,activated carbon,chloride,sulfide,dissolved organic matter,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201903447
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
3.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved