請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74040完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃心豪(Hsin-Haou Huang) | |
| dc.contributor.author | Cheng-Yan Wu | en |
| dc.contributor.author | 吳政諺 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:17:43Z | - |
| dc.date.available | 2022-08-22 | |
| dc.date.copyright | 2019-08-22 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | [1] '工研院技術院 十年磨一劍研發石墨烯超級電容器. Retrieved from https://www.itri.org.tw/chi/Content/MsgPic01/Contents.aspx?SiteID=1&MmmID=707757071523734774&MSid=744302476247743241 ,(MAY.19,2019).'
[2] '科技新報 蘋果的新專利,全固態電池到底是一種什麼樣的技術 (2015). Retrieved from http://technews.tw/2015/12/23/what-apple-new-patent-all-solid-state-battery-technique-at-all/ (May.19, 2019).' [3] '一舉兩得,多功能材料碳纖維用於車身,作為結構材料的同時還可以做電極(2018). Retrieved from http://www.cnfrp.com/news/show-67303.html (May,19,2019 ).' [4] T. Pereira, G. Zhanhu, S. Nieh, J. Arias, and H. T. Hahn, 'Energy Storage Structural Composites: a Review,' Journal of Composite Materials, vol. 43, no. 5, pp. 549-560, 2009. [5] N. Shirshova et al., 'Structural composite supercapacitors,' Composites Part A: Applied Science and Manufacturing, vol. 46, pp. 96-107, 2013. [6] 黃耀霆、黃心豪、陳洵毅, '以活化碳纖維電極及PVdF膠體聚合物製備嵌入式多功能儲能複合材料-電化學與力學性能探討。,' 2018. [7] D. D. L. Chung, 'A review of multifunctional polymer-matrix structural composites,' Composites Part B: Engineering, vol. 160, pp. 644-660, 2019. [8] T. Pereira, Z. Guo, S. Nieh, J. Arias, and H. T. Hahn, 'Embedding thin-film lithium energy cells in structural composites,' Composites Science and Technology, vol. 68, no. 7-8, pp. 1935-1941, 2008. [9] L. E. Asp and E. S. Greenhalgh, 'Multifunctional structural battery and supercapacitor composites,' pp. 619-661, 2015. [10] M. C. R.Kotz 'Principles and applications of electrochemical capacitors,' Electrochimica Acta, vol. 45, pp. 2483-2498, 2000. [11] A. Javaid, 'Activated carbon fiber for energy storage,' in Activated Carbon Fiber and Textiles, 2017, pp. 281-303. [12] A. G. Pandolfo and A. F. Hollenkamp, 'Carbon properties and their role in supercapacitors,' Journal of Power Sources, vol. 157, no. 1, pp. 11-27, 2006. [13] S. K. M. A.K Shukla, 'Electrochemical power sources,' Rechargeable Batteries, vol. 6, p. 52, 2001. [14] 'Multifunctional structural composite batteries for US Army applications.' [15] P. Liu, E. Sherman, and A. Jacobsen, 'Design and fabrication of multifunctional structural batteries,' Journal of Power Sources, vol. 189, no. 1, pp. 646-650, 2009. [16] S. Ekstedt, M. Wysocki, and L. Asp, 'Structural batteries made from fibre reinforced composites,' Plastics, rubber and composites, vol. 39, no. 3-5, pp. 148-150, 2010. [17] L. E. Asp and E. S. Greenhalgh, 'Structural power composites,' (in English), Composites Science and Technology, Article vol. 101, pp. 41-61, Sep 2014. [18] D. D. L. Chung, 'Development, design and applications of structural capacitors,' Applied Energy, vol. 231, pp. 89-101, 2018. [19] D. D. C. Xiaangcheng Luo, 'Carbon-fiber polymer-matrix composites as capacitors,' Composites Science and Technology, vol. 61, pp. 885-888, 2001. [20] T. Carlson, D. Ordéus, M. Wysocki, and L. E. Asp, 'Structural capacitor materials made from carbon fibre epoxy composites,' Composites Science and Technology, vol. 70, no. 7, pp. 1135-1140, 2010. [21] Supercapacitor. Retrieved from: https://en.wikipedia.org/wiki/Supercapacitor [22] W. Raza et al., 'Recent advancements in supercapacitor technology,' Nano Energy, vol. 52, pp. 441-473, 2018. [23] B. E. Conway, 'Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications. ,' New York: Plenum Publishers, 1999. [24] A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, 'Review on supercapacitors: Technologies and materials,' Renewable and Sustainable Energy Reviews, vol. 58, pp. 1189-1206, 2016. [25] L. L. Zhang and X. S. Zhao, 'Carbon-based materials as supercapacitor electrodes,' Chem Soc Rev, vol. 38, no. 9, pp. 2520-31, Sep 2009. [26] A. Burke, 'Ultracapacitors why, how, and where is the technology,' journal of Power Sources, vol. 91, pp. 37-50, 2000. [27] E. G. N. Shirshova, M. Shaffer,J. H. G. Steinke, P. Curtis, A. Bismarck, 'STRUCTURED MULTIFUNCTIONAL COMPOSITES FOR POWER.' [28] A. Javaid, K. K. C. Ho, A. Bismarck, M. S. P. Shaffer, J. H. G. Steinke, and E. S. Greenhalgh, 'Multifunctional structural supercapacitors for electrical energy storage applications,' Journal of Composite Materials, vol. 48, no. 12, pp. 1409-1416, 2013. [29] N. C. Goulbourne et al., 'Multifunctional composites for energy storage,' vol. 9058, p. 905808, 2014. [30] N. Shirshova et al., 'Multifunctional structural energy storage composite supercapacitors,' Faraday Discuss, vol. 172, pp. 81-103, 2014. [31] H. Qian, A. R. Kucernak, E. S. Greenhalgh, A. Bismarck, and M. S. Shaffer, 'Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric,' ACS Appl Mater Interfaces, vol. 5, no. 13, pp. 6113-22, Jul 10 2013. [32] A. Javaid, K. K. C. Ho, A. Bismarck, J. H. G. Steinke, M. S. P. Shaffer, and E. S. Greenhalgh, 'Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications,' Journal of Composite Materials, vol. 50, no. 16, pp. 2155-2163, 2015. [33] A. Javaid, K. K. C. Ho, A. Bismarck, J. H. G. Steinke, M. S. P. Shaffer, and E. S. Greenhalgh, 'Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement,' Journal of Composite Materials, vol. 52, no. 22, pp. 3085-3097, 2018. [34] E. Senokos et al., 'Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves,' Sci Rep, vol. 8, no. 1, p. 3407, Feb 21 2018. [35] N. Muralidharan et al., 'Carbon Nanotube Reinforced Structural Composite Supercapacitor,' Sci Rep, vol. 8, no. 1, p. 17662, Dec 5 2018. [36] H. Qian et al., 'Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors,' J Colloid Interface Sci, vol. 395, pp. 241-8, Apr 1 2013. [37] 'ACTIVATED CARBON FIBER - THE HYBRID OF CARBON,' REVIEW ON ADVANCED MATERIALS SCIENCE. [38] A. Linares-Solano and D. Cazorla-Amorós, 'Activated Carbon Fibers,' pp. 155-169, 2013. [39] 杜慷慨、林志勇, '碳纤维表面氧化的研究,' Journal of Huaqiao University, vol. 20, 1999. [40] B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, and Y. Yang, 'Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte,' Journal of Power Sources, vol. 195, no. 7, pp. 2118-2124, 2010. [41] K. Babel and K. Jurewicz, 'KOH activated carbon fabrics as supercapacitor material,' Journal of Physics and Chemistry of Solids, vol. 65, no. 2-3, pp. 275-280, 2004. [42] C.-L. Liu, W.-S. Dong, G.-P. Cao, J.-R. Song, L. Liu, and Y.-S. Yang, 'Influence of KOH followed by oxidation pretreatment on the electrochemical performance of phenolic based activated carbon fibers,' Journal of Electroanalytical Chemistry, vol. 611, no. 1-2, pp. 225-231, 2007. [43] K. S. W. S. D. H. E. R. A. W. H. L. M. R. A. P. J. R. T. SIEMIENIEWSKA, 'Reporting physisorption data for gassolid systems with special reference to the determination of surface area and porosity ' Pure and Applied Chemistry, vol. 57, pp. 603-619, 1985. [44] '交流阻抗-華人百科,Retrieved from https://www.itsfun.com.tw/%E4%BA%A4%E6%B5%81%E9%98%BB%E6%8A%97/wiki-4216656-5942536 ,(MAY.,2019).' [45] F. B. a. E. Frackowiak, 'Supercapacitors,Materials,Systems,and Applications,' 2013. [46] A. J. B. L. R. Faulkner, 'ELECTROCHEMICAL METHODS Fundamentals and Applications,' 2001. [47] C. Lei, F. Markoulidis, Z. Ashitaka, and C. Lekakou, 'Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC),' Electrochimica Acta, vol. 92, pp. 183-187, 2013. [48] S. Zhang and N. Pan, 'Supercapacitors Performance Evaluation,' Advanced Energy Materials, vol. 5, no. 6, p. 1401401, 2015. [49] P. Kurzweil, 'Electrochemical Double-layer Capacitors,' pp. 345-407, 2015. [50] S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, and X. Zou, 'Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent,' Electrochimica Acta, vol. 90, pp. 542-549, 2013. [51] R. Ramya, R. Sivasubramanian, and M. V. Sangaranarayanan, 'Conducting polymers-based electrochemical supercapacitors—Progress and prospects,' Electrochimica Acta, vol. 101, pp. 109-129, 2013. [52] D. S. d. Das, 'Cyclic Voltammetry(AUG,1,2013), Retrieved from http://urrjaa.blogspot.com/2013/08/cyclic-voltammetry-urrjaa-p0110-2013.html (MAY,23,2019),' 2013. [53] W. Gu, M. Sevilla, A. Magasinski, A. B. Fuertes, and G. Yushin, 'Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection,' Energy & Environmental Science, vol. 6, no. 8, p. 2465, 2013. [54] H. Oda, A. Yamashita, S. Minoura, M. Okamoto, and T. Morimoto, 'Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor,' Journal of Power Sources, vol. 158, no. 2, pp. 1510-1516, 2006. [55] '陳奕惟、黃心豪、陳洵毅, '含PVdF膠體電解質之結構超級電容複合材料研究 - 電化學性質與封裝製程探討,' 2014..' | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74040 | - |
| dc.description.abstract | 本研究成功開發出在大氣環境下利用自動化機構燒結出局部活化碳纖維,探討了不同的燒結溫度、燒結時間,C80 (700℃燒結80分鐘)和緊貼著碳纖維的方式有最大的比表面積68.39 m^2/g和單束碳纖維比電容值7.47 F/g,PVdF膠體電解質(gel polymer electrolyte) 組裝成灌注(2 cm x 2 cm)超級電容後,進行充放電測試在2 mA/g下擁有最大之電容值2.6 F/g以及90 %以上的庫倫效率,確定了活化程序後將局部活化碳纖維組裝成5 cm x 5 cm (活性面積3 cm x 3 cm)一體超級電容,在製程上利用氟碳樹脂有效的抵擋了環氧樹脂的侵入,也成功製作出能夠承受附載的「結構一體超級電容」,但因封裝後環氧樹脂可能與PVdF膠體電解質(gel polymer electrolyte)有些微碰處導致原先的官能基反應消失,從交流阻抗圖可以明顯地發現到,在未封裝前是有一個半圓(Rct)存在,代表有化學反應存在,而封裝後半圓消失,使得原先尚未封裝的比電容值從1.4 F/g 降至1.0 F/g,成功製作出規模化串接一體多功能複合材料,在實際應用上可使LED燈發亮持續超過20分鐘,小風扇轉動約1分鐘。 | zh_TW |
| dc.description.abstract | In this study, the local activated carbon fiber was successfully sintering by using the automated structure in the atmosphere, and the different sintering temperature and sintering time were discussed. The C80 (700℃ sintering for 80 minutes) and the carbon fiber had the largest specific surface area of 68.39 m^2/g and singular carbon fiber specific capacitance 7.47 F/g, PVdF gel polymer electrolyte assembled into a Perfusion(2 cm x 2 cm) supercapacitor. The charge and discharge test has a maximum capacitance of 2.6 F/g at 2 mA/g and More than 90% of the Coulomb efficiency, after the activation procedure, the locally activated carbon fiber was assembled into a 5 cm x 5 cm (active area 3 cm x 3 cm) Unibody supercapacitor, and the fluorocarbon resin was used to effectively resist the intrusion of epoxy resin in the process. Successfully produced a 'structural Unibody supercapacitor' that can withstand the loading, but since the epoxy resin may be slightly contact the PVdF gel polymer electrolyte after encapsulation. The original functional group reaction disappears, and the AC impedance can be clearly It was found that there is a semicircle (Rct) before the package, which means that there is a chemical reaction. The semicircle disappears after encapsulation, which makes the original specific capacitance that has not been packaged first is reduced from 1.4 F/g to 0.9 F/g. Successfully produced a large-scale serial multifunctional composite material. In practical applications, the LED light can be illuminated for more than 20 minutes, and the small fan is rotated for about 1 minute. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:17:43Z (GMT). No. of bitstreams: 1 ntu-108-R06525025-1.pdf: 6236060 bytes, checksum: 5186afd7a7ea08e57c01ed31e5ccb922 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vii 表目錄 xii 第一章 簡介 1 1.1 動機 1 1.2 研究背景 2 1.3 研究目的 3 1.4 重要性與貢獻 4 1.5 名詞對照與符號說明 4 1.5.1英文專有名詞與中文翻譯對照 4 1.5.2符號說明表 6 第二章 文獻探討 10 2.1沿革 10 2.2電池、電容器、超級電容器 10 2.3碳纖維電池複合材料 12 2.4碳纖維電容複合材料 14 2.5碳纖維超級電容複合材料 16 2.5.1超級電容器概述 16 2.5.2超級電容器分類及原理 18 2.6碳纖維電極活化碳討 29 2.6.1活化原理及方法 29 2.6.2活化方法比較 32 第三章 研究方法 36 3.1研究流程 36 3.2實驗方法 36 3.2.1碳纖維電極表面處理與比表面積分析 37 3.2.2電化學檢測方法 39 3.2.3自動化局部活化碳纖維製程 52 3.2.4力學測試-拉伸試驗 53 3.2.5膠體電解質製備 54 3.2.6活化碳纖維最佳化選擇-灌注(Perfusion)超級電容器製程 54 3.2.7一體(Unibody, UB)多功能儲能複合材料製程與封裝 55 3.2.8一體多功能儲能複合材料電化學性能檢測 58 3.3實驗儀器與設備 58 3.4實驗藥品 63 第四章 研究結果 64 4.1局部碳纖維電極活化 64 4.1.1比表面積 64 4.1.2 XPS 66 4.1.單束活化碳纖維比電容 67 4.1.4 SEM 69 4.1.局部活化碳纖維力學測試 71 4.2局部活化碳纖維超級電容器特性 72 4.2.1局部活化碳纖維灌注(Perfusion)超級電容電化學特性 73 4.2.2電位窗探討及操作電位探討 75 4.3一體(Unibody)多功能儲能複合材料特性 77 4.3.1 未處理碳纖維灌注(Perfusion)超級電容與一體(UB)超級電容比較 78 4.3.2一體多功能儲能複合材料電化學性質 79 4.3.3壽命檢測(天數) 83 4.3.4壽命檢測(Cycle number) 85 4.3.5規模化串接一體(4SC-UB)多功能儲能複合材料電化學性質 85 4.3.6實際測試 87 第五章 討論 88 5.1碳纖維活化製程 88 5.2膠體電解質與氟碳樹脂 90 5.3活化碳纖維孔徑分布 92 5.4最佳化製程探討 94 5.5碳纖維一體多功能儲能複合材料製程與封裝 96 5.6環氧樹脂封裝後性能下降 100 第六章 結論與未來展望 102 6.1結論 102 6.2未來展望 103 第七章 參考文獻 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 局部活化碳纖維 | zh_TW |
| dc.subject | 自動化 | zh_TW |
| dc.subject | 超級電容 | zh_TW |
| dc.subject | 一體成型 | zh_TW |
| dc.subject | 多功能複合材料 | zh_TW |
| dc.subject | Locally Activated Carbon Fiber | en |
| dc.subject | Supercapacitor | en |
| dc.subject | Unibody | en |
| dc.subject | Multifunctional Composite | en |
| dc.subject | Automation | en |
| dc.title | 自動化局部活化碳纖維製備一體多功能儲能複合材料 | zh_TW |
| dc.title | Automation of Local Carbon Fiber Activation for
Unibody Multifunctional Energy Storage Composite Materials Fabrication | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳洵毅(Hsun-Yi Chen) | |
| dc.contributor.oralexamcommittee | 宋家驥,盧彥文,張豐丞 | |
| dc.subject.keyword | 自動化,超級電容,一體成型,多功能複合材料,局部活化碳纖維, | zh_TW |
| dc.subject.keyword | Automation,Supercapacitor,Unibody,Multifunctional Composite,Locally Activated Carbon Fiber, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU201903171 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
