Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣(Chao-Hsin Wu)
dc.contributor.authorChun-Kai Changen
dc.contributor.author張鈞凱zh_TW
dc.date.accessioned2021-06-17T08:17:41Z-
dc.date.available2024-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citation[1] International Technology Roadmap for Semiconductors, “Executive Summary,” (2011).
[2] Cisco Visual Networking Index: Global Mobile Data Traffic Forcast Update, 2016-2021 White Paper.(http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html )
[3] Ikechi Augustine Ukaegbu, et al, “Performance analysis of vertical and horizontal transmitter array modules using short and long wavelength VCSELs for optical interconnects,” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 3, no. 5, pp. 740-748, (2013).
[4] D. Kuchta et al., “64Gb/s Transmission over 57m MMF using an NRZ Modulated 850nm VCSEL,” Proc. Optical Fiber Communication Conf., paper Th3C.2 (2014).
[5] Harris, J.S., Jr., “GaInNAs long wavelength lasers: progress and challenges,” Semicond. Sci. Technol., 17, pp. 880–891 (2002).
[6] N. Tansu and L. J. Mawst, 'The role of hole-leakage in 1300-nm InGaAsN quantum well lasers,' Appl. Phys. Lett. 82,1500 (2003).
[7] Sandra R. Selmic, et al, “Design and Characterization of 1.3m AlGaInAs–InP Multiple-Quantum-Well Lasers,” IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 7, NO. 2, (2001).
[8] James Ferrara, et. al., “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” OE, Vol.23, No.3 (2015).
[9] M. Müller,et al, “Short-Cavity Long-Wavelength VCSELs With Modulation Bandwidths in Excess of 15 GHz,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 21, (2009).
[10] Å. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, MemberIEEE,” Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, Aug. 2005.
[11] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, Member, IEEE, and A. Larsson,Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, Feb. 2004.
[12] Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, Kosuke Moritoh , Toshihiko Baba,” High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. 2004.
[13] W. D. Laidig, N. Holonyak Jr., M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen” Disorder of an AlAs‐GaAs superlattice by impurity diffusion” Applied Physics Letters 38, 776 (1981)
[14] Nick Holonyak, Jr., Wyn D. Laidig “Method for producing integrated semiconductor light emitter” March 29, 1983, Patent number: 4378255
[15] Jin-Wei Shi, Senior Member, IEEE, Jhih-Cheng Yan, Jhih-Min Wun, Jason Chen, and Ying-Jay Yang ” Oxide-Relief and Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/s Operations ” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 2, march/april 2013.
[16] Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang and R. Fernandez “CONTINUOUS WAVE SINGLE TRANSVERSE MODE VERTICAL-CAVITY SURFACE- EM Ill7 N G LASERS FABRICATED BY HELIUM IMPLANTATION AND ZINC DIFFUSION’ ELECTRONICS LETTERS 30th January 1992 Vol. 28 No. 3
[17] T. G. Dziura, Y. J. Yang, R. Fernandez and S. C. Wang “SINGLEMODE SURFACE EMITTING LASER USING PARTIAL MIRROR DISORDERING” ELECTRONICS LETTERS 8th July 1993 Vol. 29 No. 14
[18] C. C. Chen, S. J. Liaw, and Y. J. Yang, Member, IEEE ”Stable Single-Mode Operation of an 850-nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 13, NO. 4, APRIL 2001
[19] Holonyak Jr, Nick, and John M. Dallesasse. 'AlGaAs native oxide.' U.S. Patent No. 5,262,360. 16 Nov. 1993.
[20] Holmes, A. L., et al. 'High‐reflectivity visible‐wavelength semiconductor native oxide Bragg reflectors grown by metalorganic chemical vapor deposition.'Applied physics letters 66.21 (1995): 2831-2833
[21] T. Nishida, M. Takaya, S. Kakinuma, and T. Kaneko, “4.2-mW GaInNAs long-wavelength VCSEL grown by metalorganic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron, vol. 11, no. 5, 958–961 (2005).
[22] M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, and M-C. Amann, “Low-resistance InGa(Al)As Tunnel Junctions for Long Wavelength Vertical-cavity Surface-emitting Lasers, ” Jpn. J. Apl. Phys. 39, 1727–1729 (2000).
[23] M. Muller et al., “1550-nm High-Speed Short-Cavity VCSELs,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 5 (2011).
[24] E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3, 27–29 (2009).
[25] Chao-Kun Lin, David P. Bour, Fellow, IEEE, Jintian Zhu, William H. Perez, Michael H. Leary, Member, IEEE, Ashish Tandon, Scott W. Corzine, and Michael R. T. Tan, Member, IEEE“High Temperature Continuous-Wave Operation of 1.3-μm and 1.55-μm VCSELs With InP/Air-Gap DBRs“ IEEE J. Select. Topics Quantum Electron. VOL. 9, NO. 5, SEPTEMBER/OCTOBER 2003.
[26] N. Chitica and M. Strassner, “Room-temperature operation of photopumped monolithic InP vertical laser with two air-gap Bragg reflectors,”Appl. Phys. Lett., vol. 78, no. 25, pp. 3935–3937, 2001.
[27] K. Streubel, S. Rapp, J. Andre, and N. Chitica, “1.26-μm vertical cavity laser with two InP/air-gap reflectors,” Electron. Lett., vol. 32, no. 15, pp.1369–1370, 1996.
[28] S. Adachi, Y. Noguchi, and H. Kawaguchi, “Chemical Etching of InGaAsP / InP DH Wafer,” J. Electrochem. Soc., vol. 129(5), pp. 1053–1062, 1982.
[29] Yu-Chia Chang and Larry A. Coldren, Fellow, IEEE”Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 3, MAY/JUNE 2009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74039-
dc.description.abstract本論文探討1310奈米長波長垂直共振腔面射型雷射的開發製作,包含磊晶結構設計、製程開發以及直流電性量測分析,特別是針對上部布拉格反射鏡的製作。論文內容包含磊晶結構設計、反射率模擬分析、InP蝕刻測試、上部反射鏡製作開發、光罩設計與製作流程步驟和光電直流特性量測。
首先,對於現今光電通訊傳輸做個介紹,並探討面射型雷射與邊射型雷射的差異,以及長波長與短波長面射型雷射的優點及應用範圍,最後提出本研究計畫的想法、設計與優點。
接著,會介紹磊晶結構設計及利用軟體模擬其磊晶特性(反射率、電場分布),並介紹InP的蝕刻特性以及上部半導體/空氣反射鏡製作開發,包含N型平台蝕刻測試、離子佈植選擇比差異蝕刻測試、材料嵌入後蝕刻測試。
當我們成功測試出製作方法後,接著以製程經驗去設計每一道光罩,並且說明製程裡變因的設計—侷限孔徑,如何控制侷限深度的蝕刻以及實際上製程流程步驟說明,製作半導體/空氣結構上部布拉格反射鏡的垂直共振腔面射型雷射並討論直流電性量測,分析不同侷限孔徑下光強與電流曲線的結果,以及上部反射鏡蝕刻前後的差異之處。
我們同時也有改變上部布拉格反射鏡的做法,試著利用外部沉積介電質做為新的反射鏡,說明如何設計介電質反射鏡來匹配共振腔的條件,以及實際元件製程流程步驟,一樣分析不同侷限孔徑下光強與電流曲線以及沉積介電質反射鏡前後的結果。
最後,為整篇論文的總結並對於未來進一步改善的方向說明。
zh_TW
dc.description.abstractIn this thesis, we focus on the development of long-wavelength vertical cavity surface-emitting lasers(VCSELs), including epitaxial structure design, process development and DC measurement analysis, especially the fabrication of top bragg reflectors. The content of the paper includes epitaxial structure design, reflectance simulation analysis, InP etching test, development of top DBR, mask design and fabrication process steps and photoelectric DC characteristic measurement.
First, we introduce the current optical communication transmission, and discusses the difference between the surface-emitting laser and the edge-emitting laser, as well as the advantages and applications of long- wavelength and short-wavelength lasers. Finally, the idea, design and advantages of the project are proposed.
Following, we introduce the epitaxial structure design and simulate its epitaxial properties (reflectivity, electric field distribution), and illustrates the etching characteristics of InP and the development of the upper semiconductor/air mirror, including N-shape mesa etching test, ion implant test and the material embedded etch test.
After we get the approach form test, we design every mask form out experiences. And then we introduce the design of the variation in the process - the aperture, how to control depth in etch process. The actual process flow steps are also illustrated, and the DC current measurement is discussed. The results of the light output power and current curves under different confinement apertures are analyzed, and The difference between the upper mirror before and after etching.
In this research, we also change the approaches of top DBR. Depositing dielectric as a new mirror and illustrate how to design a dielectric DBR to match the resonant cavity. Actual component process steps are also modified. The output power and current curves at the confined aperture and the results before and after deposition of the dielectric mirror.
Final, there is summary of the whole paper and a description of the direction for further improvement in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:17:41Z (GMT). No. of bitstreams: 1
ntu-108-R05941111-1.pdf: 5248855 bytes, checksum: 4482c6b3486f7bb1830e86e3c830aa78 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 #
誌謝 i
中文摘要 iv
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xiv
Chapter 1 緒論 1
1.1 背景介紹 1
1.2 面射型雷射與邊射型雷射差異 2
1.3 短波長與長波長面射型雷射差異 4
1.4 研究動機與結構設計想法及優點 6
Chapter 2 磊晶結構設計及晶圓製程測試 7
2.1 元件結構設計與其蝕刻特性 7
2.1.1 晶圓磊晶結構 7
2.1.2 元件結構設計 9
2.2 磷化銦(InP)蝕刻特性 14
2.2.1 前言 14
2.2.2 蝕刻InP溶液的選擇 14
2.2.3 磷化銦晶格面特性對蝕刻之影響 15
2.3 N-Shape Mesa光罩設計與結果驗證 19
2.3.1 光罩設計及實際OM與SEM圖 19
2.3.2 微縮後的困難點 20
2.4 離子佈植對於InGaAsP/InP選擇比影響 20
2.4.1 實驗設計發想及剖面示意圖 20
2.4.2 實際蝕刻OM及SEM驗證 21
2.4.3 離子佈植的困難點 22
2.5 嵌入材料支撐實驗 23
2.5.1 嵌入材料想法與設計 23
2.5.2 各類包覆沉積實際嵌入結果之SEM圖比較 23
2.5.3 嵌入材料後蝕刻測試 25
Chapter 3 空氣間隙上反射鏡設計之元件 28
3.1 反射鏡製作設計 28
3.2 侷限孔徑設計 31
3.3 元件製程步驟 34
3.4 直流特性分析 43
3.4.1 量測系統 43
3.4.2 元件直流特性分析 44
Chapter 4 沉積外部上反射鏡設計之元件 53
4.1 外部介電質上反射鏡設計 53
4.1.1 前言 53
4.1.2 外部介電質上反射鏡設計 53
4.2 元件製程步驟 54
4.3 元件直流特性分析 61
Chapter 5 結論 66
REFERENCE 68
附錄 72
dc.language.isozh-TW
dc.title1310奈米長波長垂直共振腔面射型雷射製程開發與分析zh_TW
dc.titleFabrication Development and Analysis of 1310 nm Long-Wavelength Vertical Cavity Surface Emitting Lasersen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor蔡睿哲(Jui-Che Tsai)
dc.contributor.oralexamcommittee陳奕君(I-Chun Chen)
dc.subject.keyword長波長垂直共振腔面射型雷射,磷化銦蝕刻,空氣間隙,介電質反射鏡,zh_TW
dc.subject.keywordlong-wavelength VCSEL,InP etch,Air-gap,Dielectric Mirror,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201903216
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved