請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74036
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
dc.contributor.author | Li-Yen Kuo | en |
dc.contributor.author | 郭立言 | zh_TW |
dc.date.accessioned | 2021-06-17T08:17:34Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | M. E. Basbug and B. E. Engelhardt. Hierarchical compound poisson factorization. arXiv preprint arXiv:1604.03853, 2016.
M. E. Basbug and B. E. Engelhardt. Coupled compound poisson factorization. arXiv preprint arXiv:1701.02058, 2017. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. N. Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd International Conference on Machine learning (ICML-05), pages 89–96, 2005. C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions. In Advances in neural information processing systems, pages 193–200, 2007. Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking svm to document retrieval. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pages 186–193. ACM, 2006. Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In Proceedings of the 24th international conference on Machine learning, pages 129–136. ACM, 2007. A. T. Cemgil. Bayesian inference for nonnegative matrix factorisation models. Computational intelligence and neuroscience, 2009, 2009. L. Charlin, R. Ranganath, J. McInerney, and D. M. Blei. Dynamic poisson factorization. In Proceedings of the 9th ACM Conference on Recommender Systems, pages 155–162. ACM, 2015. E. d. S. da Silva, H. Langseth, and H. Ramampiaro. Content-based social recommendation with poisson matrix factorization. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 530–546. Springer, 2017. Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Journal of machine learning research, 4(Nov):933–969, 2003. J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001. W. Gardner, E. P. Mulvey, and E. C. Shaw. Regression analyses of counts and rates: Poisson, overdispersed poisson, and negative binomial models. Psychological bulletin, 118(3):392, 1995. P. Gopalan, J. M. Hofman, and D. M. Blei. Scalable recommendation with hierarchical poisson factorization. In UAI, pages 326–335, 2015. P. Gopalan, F. J. Ruiz, R. Ranganath, and D. Blei. Bayesian nonparametric poisson factorization for recommendation systems. In Artificial Intelligence and Statistics, pages 275–283, 2014. P. K. Gopalan, L. Charlin, and D. Blei. Content-based recommendations with poisson factorization. In Advances in Neural Information Processing Systems, pages 3176–3184, 2014. O. Gouvert, T. Oberlin, and C. Févotte. Negative binomial matrix factorization for recommender systems. arXiv preprint arXiv:1801.01708, 2018. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, pages 173–182. International World Wide Web Conferences Steering Committee, 2017. M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013. S. Hosseini, A. Khodadadi, K. Alizadeh, A. Arabzadeh, M. Farajtabar, H. Zha, and H. R. Rabiee. Recurrent poisson factorization for temporal recommendation. IEEE Transactions on Knowledge and Data Engineering, 2018. Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages 263–272. Ieee, 2008. C. C. Johnson. Logistic matrix factorization for implicit feedback data. Advances in Neural Information Processing Systems, 27, 2014. M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine learning, 37(2):183–233, 1999. L.-Y. Kuo, C.-K. Chou, and M.-S. Chen. Personalized ranking on poisson factorization. In Proceedings of the 2018 SIAM International Conference on Data Mining, pages 720–728. SIAM, 2018. J. F. Lawless. Negative binomial and mixed poisson regression. Canadian Journal of Statistics, 15(3):209–225, 1987. D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788, 1999. D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances in neural information processing systems, pages 556–562, 2001. D. Liang, L. Charlin, J. McInerney, and D. M. Blei. Modeling user exposure in recommendation. In Proceedings of the 25th International Conference on World Wide Web, pages 951–961. International World Wide Web Conferences Steering Committee, 2016. J. Liu, C. Wu, Y. Xiong, and W. Liu. List-wise probabilistic matrix factorization for recommendation. Information Sciences, 278:434–447, 2014. T.-Y. Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval, 3(3):225–331, 2009. A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. In Advances in neural information processing systems, pages 1257–1264, 2008. A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. In Advances in neural information processing systems, pages 1257–1264, 2008. D. H. Park and Y. Chang. Adversarial sampling and training for semi-supervised information retrieval. In The World Wide Web Conference, pages 1443–1453. ACM, 2019. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009. A. Schein, J. Paisley, D. M. Blei, and H. Wallach. Bayesian poisson tensor factorization for inferring multilateral relations from sparse dyadic event counts. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1045–1054. ACM, 2015. M. N. Schmidt, O. Winther, and L. K. Hansen. Bayesian non-negative matrix factorization. In International Conference on Independent Component Analysis and Signal Separation, pages 540–547. Springer, 2009. Y. Shi, M. Larson, and A. Hanjalic. List-wise learning to rank with matrix factorization for collaborative filtering. In Proceedings of the fourth ACM conference on Recommender systems, pages 269–272. ACM, 2010. H. Valizadegan, R. Jin, R. Zhang, and J. Mao. Learning to rank by optimizing ndcg measure. In Advances in neural information processing systems, pages 1883–1891, 2009. J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang. Irgan: A minimax game for unifying generative and discriminative information retrieval models. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 515–524. ACM, 2017. Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for information retrieval measures. Information Retrieval, 13(3):254–270, 2010. F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to rank: theory and algorithm. In Proceedings of the 25th international conference on Machine learning, pages 1192–1199. ACM, 2008. S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):5, 2019. W. Zhang, T. Chen, J. Wang, and Y. Yu. Optimizing top-n collaborative filtering via dynamic negative item sampling. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 785–788. ACM, 2013. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74036 | - |
dc.description.abstract | 矩陣分解在推薦系統中已然贏得了碩大的成功。在真實世界的隱含回饋中,矩陣元素值約略符合冪定律分佈。確切言之,許多矩陣元素的值是異常高的,這些值在本文中以過散佈稱之。一般使用的矩陣分解植基於回歸分析,其不僅易受過散佈資料影響,更無法確保預測值能與使用者喜好次序相符。有鑑於此,我們提出了兩種觀點以減緩資料過散佈所造成的影響。第一個觀點以排序學習為基礎。我們提出了一個於帕松分解上個人化排序的框架,捨棄傳統回歸分析上的後驗機率,轉而利用植基於排序學習的後驗機率。因個人化排序與帕松分解之結合,該框架不僅保存了用戶的喜好,在稀疏矩陣上亦有良好的表現。也因結合排序學習與帕松分解,致使後驗機率無法符合共軛先驗,我們對變分參數的估計加以近似,從而提出兩個植基於變分推論的最佳化方式。不論使用的排序學習模型為何,只要模型可得出一階與二階導數,經過該框架,本文提出的最佳化演算法皆可以對後驗機率進行最大化。第二個觀點是對於失敗接觸的考量。在推薦系統中,當一位用戶接觸一件商品時,用戶可能會消費該商品(稱為成功接觸),也可能略過該商品(稱為失敗接觸)。我們提出一個新方法,階層式負二項式分解,其以階層式的貝葉斯結構對資料散佈性進行建模,而非僅將散佈性的先驗分佈視為固定的常數,透過減緩資料過散佈的影響,從而助於推薦效果之提升。此外,我們將矩陣中零元素的資料散佈性近似地分解為兩個低秩的矩陣,致使每時期的計算成本可降低為正比於非零元素的數量。在實驗中,以準確率與召回率為量測基準,在推薦系統的隱含回饋資料上,我們提出的方法勝過現今最新技術。 | zh_TW |
dc.description.abstract | Matrix factorization has earned great success on recommender systems. In real-world implicit feedback, values of entries follow power-law distributions approximately. More specifically, several entries have extraordinary high values, which are called overdispersed ones in this dissertation. The common-used regression-based matrix factorization not only is sensitive to overdispersed data but also unable to guarantee that the predicted values are coordinate with the user preference orders. In light of this, we propose two perspectives for the alleviation of the effect of data overdispersion. The first perspective is on the basis of learning to rank. We propose a framework for personalized ranking of Poisson factorization, which utilizes learning-to-rank based posteriori instead of the classical regression-based ones. Owing to the combination, the proposed framework not only preserves user preference but also performs well on a sparse matrix. Since the posteriori that combines learning to rank and Poisson factorization does not follow the conjugate prior relationship, we estimate variational parameters approximately and propose two optimization approaches based on variational inference. As long as the used learning-to-rank model has the 1st and 2nd order partial derivatives, by exploiting our framework, the proposed optimizing algorithm can maximize the posteriori whichever the used learning-to-rank model is. The second perspective is the consideration of failure exposure. When being exposed to an item in a recommender system, a user may consume the item (as known as success exposure) or may neglect it (as known as failure exposure). We propose a novel model, hierarchical negative binomial factorization (HNBF), which models dispersion by a hierarchical Bayesian structure rather than assigning a constant to the prior of dispersion directly, thus alleviating the effect of data overdispersion to help with performance gain for recommendation. Moreover, we factorize the dispersion of zero entries approximately into two low-rank matrices, thus limiting the computational cost of updating per epoch linear to the number of nonzero entries. In the experiment, we show that the proposed methods outperform the state-of-the-art ones in terms of precision and recall on implicit feedback in recommendation tasks. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:17:34Z (GMT). No. of bitstreams: 1 ntu-108-D02921022-1.pdf: 1922557 bytes, checksum: 980ca35bdf85c9f2283d3924733359a4 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書iii
誌謝v 摘要vii Abstract ix 1 Introduction 1 2 Related Work 7 2.1 Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Matrix Factorization to Data Overdispersion . . . . . . . . . . . 8 2.1.2 Exposure Modeling on Implicit Data . . . . . . . . . . . . . . . . 8 2.1.3 Deep-learning Based Approaches . . . . . . . . . . . . . . . . . 9 2.2 Learning To Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Personalized Ranking of Poisson Factorization 11 3.1 Ranking Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Probability of Observation . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Proposed Posterior Probability . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Selection of Approximation Points . . . . . . . . . . . . . . . . . . . . . 20 3.6 User-wise Stochastic Mini-Batch VI . . . . . . . . . . . . . . . . . . . . 22 3.7 Examples to Apply LTR Models . . . . . . . . . . . . . . . . . . . . . . 23 3.7.1 Point-wise Learning to Rank . . . . . . . . . . . . . . . . . . . . 23 3.7.2 Pair-wise Learning to Rank . . . . . . . . . . . . . . . . . . . . 24 3.7.3 List-wise Learning to Rank . . . . . . . . . . . . . . . . . . . . . 26 4 Hierarchical Negative Binomial Factorization 31 4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Proposed Hierarchical Bayesian Structure . . . . . . . . . . . . . . . . . 33 4.3 Improvement for Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 Updating Algorithm and Complexity Analysis . . . . . . . . . . . . . . . 35 4.4.1 Complete Conditionals of Variables Violating Conjugacy . . . . 38 4.4.2 Complete Conditionals of User Exposure Count and Exposure Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4.3 Complete Conditionals of Dispersion and Dispersion Factors . . . 40 5 Experiments 43 5.1 Datasets and Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Competing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.1 PRPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.2 FastHNBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4.2 Results on Implicit Count . . . . . . . . . . . . . . . . . . . . . 50 5.4.3 Results on Explicit Rating . . . . . . . . . . . . . . . . . . . . . 53 5.4.4 Computing Time and Convergence of FastHNBF . . . . . . . . . 56 5.4.5 User Activity of FastHNBF . . . . . . . . . . . . . . . . . . . . 57 6 Conclusion and Future Work 61 Bibliography 63 | |
dc.language.iso | en | |
dc.title | 在用於推薦系統的隱含回饋中對於資料過散佈之減緩 | zh_TW |
dc.title | Alleviation of Data Overdispersion On Implicit Feedback for Recommender Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 戴志華(Chih-Hua Tai),楊得年(De-Nian Yang),駱明凌(Ming-Ling Lo),黃仁暐(Jen-Wei Huang),曾新穆(Vincent S. Tseng) | |
dc.subject.keyword | 推薦系統,帕松分佈,負二項式分佈,排序學習,隱含回饋, | zh_TW |
dc.subject.keyword | recommender systems,Poisson distribution,negative binomial distribution,learning to rank,implicit feedback, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU201903449 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 1.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。