Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達
dc.contributor.authorTing Hsuen
dc.contributor.author許婷zh_TW
dc.date.accessioned2021-06-17T08:17:13Z-
dc.date.available2020-09-01
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citationM. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,”Nature, vol. 435, pp. 321–324, May 2005.
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys., vol. 87, pp. 637–701, Jun 2015.
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - a review,” IEEE Sensors Journal, vol. 11, no. 9, pp. 1749–1758, 2011.
I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nature Physics, vol. 8, p. 267, Apr. 2012.
L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, pp. 413–418, Nov. 2001.
M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys., vol. 75, pp. 457–472, Apr 2003.
H. J. Kimble, “The quantum internet,” Nature, vol. 453, p. 1023, June 2008.
P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum network of clocks,” Nature Physics, vol. 10, p. 582, June 2014.
S. J. Roof, K. J. Kemp, M. D. Havey, and I. M. Sokolov, “Observation of singlephoton superradiance and the cooperative lamb shift in an extended sample of cold atoms,” Phys. Rev. Lett., vol. 117, p. 073003, Aug 2016.
55
D. E. Chang, J. Ye, and M. D. Lukin, “Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock,” Phys. Rev. A, vol. 69, p. 023810, Feb 2004.
R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev., vol. 93, pp. 99–110, Jan 1954.
R. H. Lehmberg, “Radiation from an n-atom system. i. general formalism,” Phys. Rev. A, vol. 2, pp. 883–888, Sep 1970.
M. O. Araújo, I. Kreši´c, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett., vol. 117, p. 073002, Aug 2016.
F. Cottier, R. Kaiser, and R. Bachelard, “Role of disorder in super- and subradiance of cold atomic clouds,” Phys. Rev. A, vol. 98, p. 013622, Jul 2018.
A. S. Kuraptsev, I. M. Sokolov, and M. D. Havey, “Angular distribution of singlephoton superradiance in a dilute and cold atomic ensemble,” Phys. Rev. A, vol. 96, p. 023830, Aug 2017.
W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a large cloud of cold atoms,” Phys. Rev. Lett., vol. 116, p. 083601, Feb 2016.
J. Pellegrino, R. Bourgain, S. Jennewein, Y. R. P. Sortais, A. Browaeys, S. D. Jenkins, and J. Ruostekoski, “Observation of suppression of light scattering induced by dipole-dipole interactions in a cold-atom ensemble,” Phys. Rev. Lett., vol. 113, p. 133602, Sep 2014.
M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nature Photonics, vol. 7, p. 197, Feb. 2013.
C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional anderson localization and lasing in inverted opals,” Nature Physics, vol. 4, p. 794, Aug. 2008.
J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett., vol. 108, p. 173601, Apr 2012.
M. O. Scully, “Collective lamb shift in single photon dicke superradiance,” Phys. Rev. Lett., vol. 102, p. 143601, Apr 2009.
R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Frequency shifts in emission and absorption by resonant systems ot two-level atoms,” Physics Reports, vol. 7, pp. 101–179, Mar. 1973.
R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, “Collective lamb shift in single-photon superradiance,” Science, vol. 328, p. 1248, June 2010.
B. Zhu, J. Cooper, J. Ye, and A. M. Rey, “Light scattering from dense cold atomic media,” Phys. Rev. A, vol. 94, p. 023612, Aug 2016.
I. M. Sokolov, M. D. Kupriyanova, D. V. Kupriyanov, and M. D. Havey, “Light scattering from a dense and ultracold atomic gas,” Phys. Rev. A, vol. 79, p. 053405, May 2009.
W. Guerin, M. Rouabah, and R. Kaiser, “Light interacting with atomic ensembles: collective, cooperative and mesoscopic effects,” Journal of Modern Optics, vol. 64, no. 9, pp. 895–907, 2017.
S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A. Browaeys, “Coherent scattering of nearresonant light by a dense microscopic cold atomic cloud,” Phys. Rev. Lett., vol. 116, p. 233601, Jun 2016.
S. L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell, J. Schachenmayer, T. L. Nicholson, R. Kaiser, S. F. Yelin, M. D. Lukin, A. M. Rey, and J. Ye, “Collective atomic scattering and motional effects in a dense coherent medium,” Nature Communications, vol. 7, p. 11039, Mar. 2016.
L. Chomaz, L. Corman, T. Yefsah, R. Desbuquois, and J. Dalibard, “Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis,” New Journal of Physics, vol. 14, p. 055001, may 2012.
T. Bienaimé, R. Bachelard, N. Piovella, and R. Kaiser, “Cooperativity in light scattering by cold atoms,” Fortschr. Phys., vol. 61, pp. 377–392, July 2012.
N. J. Schilder, C. Sauvan, J.-P. Hugonin, S. Jennewein, Y. R. P. Sortais, A. Browaeys, and J.-J. Greffet, “Polaritonic modes in a dense cloud of cold atoms,” Phys. Rev. A, vol. 93, p. 063835, Jun 2016.
W. Guerin and R. Kaiser, “Population of collective modes in light scattering by many atoms,” Phys. Rev. A, vol. 95, p. 053865, May 2017.
L. Bellando, A. Gero, E. Akkermans, and R. Kaiser, “Cooperative effects and disorder: A scaling analysis of the spectrum of the effective atomic hamiltonian,” Phys. Rev. A, vol. 90, p. 063822, Dec 2014.
Y. Li, J. Evers, W. Feng, and S.-Y. Zhu, “Spectrum of collective spontaneous emission beyond the rotating-wave approximation,” Phys. Rev. A, vol. 87, p. 053837, May 2013.
W. Feng, Y. Li, and S.-Y. Zhu, “Effect of atomic distribution on cooperative spontaneous emission,” Phys. Rev. A, vol. 89, p. 013816, Jan 2014.
A. A. Svidzinsky, J.-T. Chang, and M. O. Scully, “Cooperative spontaneous emission of n atoms: Many-body eigenstates, the effect of virtual lamb shift processes, and analogy with radiation of n classical oscillators,” Phys. Rev. A, vol. 81, p. 053821, May 2010.
S. E. Skipetrov and I. M. Sokolov, “Absence of anderson localization of light in a random ensemble of point scatterers,” Phys. Rev. Lett., vol. 112, p. 023905, Jan 2014.
A. Biella, F. Borgonovi, R. Kaiser, and G. L. Celardo, “Subradiant hybrid states in the open 3d anderson-dicke model,” EPL (Europhysics Letters), vol. 103, p. 57009, Sept. 2013.
J. K. Bloomfield, S. H. P. Face, and Z. Moss, Indefinite Integrals of Spherical Bessel Functions. Mar. 2017.
H. Liu and J. Zou, “Zeros of the Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering,” IMA Journal of Applied Mathematics, vol. 72, pp. 817–831, 10 2007.
Y. A. Fofanov, A. S. Kuraptsev, I. M. Sokolov, and M. D. Havey, “Dispersion of the dielectric permittivity of dense and cold atomic gases,” Phys. Rev. A, vol. 84, p. 053811, Nov 2011.
W. E. Lamb and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev., vol. 72, pp. 241–243, Aug 1947.
H. A. Bethe, “The electromagnetic shift of energy levels,” Phys. Rev., vol. 72, pp. 339–341, Aug 1947.
A. Svidzinsky and J.-T. Chang, “Cooperative spontaneous emission as a many-body eigenvalue problem,” Phys. Rev. A, vol. 77, p. 043833, Apr 2008.
R. Friedberg and J. T. Manassah, “The dynamical cooperative lamb shift in a system of two-level atoms in a slab-geometry,” Physics Letters A, vol. 373, pp. 3423–3429, Sept. 2009.
R. Friedberg and J. T. Manassah, “Analytic expressions for the initial cooperative decay rate and cooperative lamb shift for a spherical sample of two-level atoms,” Physics Letters A, vol. 374, pp. 1648–1659, Apr. 2010.
J. T. Manassah, “The dynamical cooperative lamb shift in a system of two-level atoms in a sphere in the scalar photon theory,” Laser Physics, vol. 20, pp. 259–269, Jan. 2010.
J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, “Shifts of a resonance line in a dense atomic sample,” Phys. Rev. Lett., vol. 112, p. 113603, Mar 2014.
J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, “Julia: A fresh approach to numerical computing,” SIAM Rev., vol. 59, pp. 65–98, July 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74026-
dc.description.abstract由於原子間具有偶極-偶極交互作用,原子團展現出有別於單原子系統的協同現象,其中一個重要的物理量為協同蘭姆位移。近年來,協同蘭姆位移已於原子團散射光譜中被觀測到,然而在不同幾何形狀的系統中其尺度參數並不相同,並且此頻率位移尚欠缺理論詮釋。我們利用數值模擬計算了典型的高密度冷原子團散射光譜,發現其具有數個峰值(頻移)。透過分析原子團的量子協同態,我們將這些峰值區分為兩種不同物理來源。其一來自於原子團整體的高激發量,這類頻移相當微小,並且與各系統參數皆無明顯相關;另一來自於特定協同態的激發,這些協同態的空間頻率與輻射場相當接近,因此能產生較強的散射光,這類頻移與原子團的光學深度成正比。我們的研究提供了協同蘭姆位移的理論詮釋,並解釋了不同實驗系統中所呈現的不同尺度參數。zh_TW
dc.description.abstractThe cooperative Lamb shift is an important physical quantity that reveals the cooperative nature of an atomic ensemble in light-matter interaction. In particular, many efforts have been made to investigate the cooperative Lamb shift identified from the forward scattering spectrum, both theoretically and experimentally. However, the physical interpretation of the cooperative Lamb shift has not been clarified. The scaling of the shift even differs in different kinds of ensembles. In our work, we investigate cold, dense atomic ensembles interacting with a plane-wave laser field in the low-excitation regime. The ensemble is described by a non-Hermitian effective Hamiltonian which contains the dipole-dipole interaction between every pair of atoms. We numerically compute the forward scattering spectrum and find several peaks (shifts). We demonstrate that by an appropriate choice of collective basis, the physical interpretations of the shifts are clearly revealed. We thus distinguish two kinds of shifts. One results from the large excitation of the ensemble, and the shift is relatively small regardless of the parameters. The other is due to the large correlation between atoms and the resulting strong coherent scattering, when the laser is tuned resonant with the collective states whose spatial frequencies are closest to the field. We find that the latter kind of shifts increases linearly with the optical depth of the ensemble but the former does not. Our analysis not only gives intuitive interpretation of the cooperative Lamb shift, but also explains why there seems to be different scalings in different studies, since there are actually two kinds of shifts.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:17:13Z (GMT). No. of bitstreams: 1
ntu-108-R04222028-1.pdf: 2545001 bytes, checksum: 2467a9cfd539a6765f0f16c0f7a877d7 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 i
Abstract ii
1 Introduction 1
2 Model and Methodology 5
2.1 Model 5
2.1.1 Equations of motion and the steady-state solution 5
2.1.2 Scattering spectrum 8
2.1.3 Collective basis 8
2.1.3.1 Eigenbasis of H0 9
2.1.3.2 Eigenbasis of Hreal 10
2.1.3.3 Eigenbasis of Himag 10
2.1.3.4 Level schemes 11
2.1.4 Participation ratio 12
2.2 Spontaneous emission spectrum of timed-Dicke states 12
2.3 Units and conventions 14
3 Analytical form of collective basis 15
3.1 Overview 15
3.2 Equation of motion in the integral form 16
3.3 Eigenvalue equations 16
3.3.1 V(r,r') 16
3.3.2 Real part of V(r,r') 19
3.3.3 Imaginary part of V(r,r') 21
3.3.4 Summary 22
3.4 Further calculation 23
3.5 Discussion 27
3.6 Summary 28
4 Forward scattering spectrum and cooperative Lamb shift–simulation and analysis 29
4.1 Overview 29
4.2 Uniform ensemble 30
4.2.1 A typical case 30
4.2.2 More cases 37
4.2.3 Scaling of cooperative Lamb shift 39
4.3 Gaussian ensemble 41
4.3.1 Spherical 41
4.3.2 Cigar-shaped 43
4.3.3 Comparison with other works 44
4.4 Discussion 46
4.4.1 More about the shifts 46
4.4.2 The physical interpretation of cooperative Lamb shift 46
4.4.3 Comparison between analytical and numerical results 48
4.4.4 Comparison of different collective basis 48
4.4.5 Analysis of linewidth 50
4.4.6 Excitation distribution inside the ensemble 51
4.4.7 Simulation details 51
5 Conclusion 53
Bibliography 55
dc.language.isoen
dc.subject協同蘭姆位移zh_TW
dc.subject光散射zh_TW
dc.subject偶極-偶極交互作用zh_TW
dc.subject冷原子zh_TW
dc.subjectCold atomen
dc.subjectDipole-dipole interactionen
dc.subjectLight scatteringen
dc.subjectCooperative Lamb shiften
dc.title以量子協同態探討原子團散射之協同蘭姆位移zh_TW
dc.titleCooperative States and Lamb Shift in Resonant Light Scattering of an Atomic Ensembleen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳應誠,任祥華
dc.subject.keyword冷原子,偶極-偶極交互作用,光散射,協同蘭姆位移,zh_TW
dc.subject.keywordCold atom,Dipole-dipole interaction,Light scattering,Cooperative Lamb shift,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201903442
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved