Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74019
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文正(Wen-Cheng Liao)
dc.contributor.authorKuang-Chieh Linen
dc.contributor.author林廣杰zh_TW
dc.date.accessioned2021-06-17T08:16:59Z-
dc.date.available2020-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citation[1] ACI Committee 222, “Protection of Metals in Concrete Against Corrosion (ACI 222R-01),” Ameriacn Concrete Institute (ACI), Farmington Hills, MI, pp.11, 2001.
[2] ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14),” Ameriacn Concrete Institute (ACI), Farmington Hills, MI, 2014.
[3] Alonso, C., Andrade C., & Gonzalez J. A., “Relation between Resistivity and Corrosion Rate of Reinforcements in Carbonated Mortar Made with Several Cement Type.” Cement and Concrete Research, 18(5), pp. 687-698, 1988.
[4] Andrade, C., & Martínez, I. “14 - Techniques for Measuring the Corrosion Rate (Polarization Resistance) and The Corrosion Potential of Reinforced Concrete Structures”, In Woodhead Publishing Series in Civil and Structural Engineering, Woodhead Publishing, Volume 2, Pages 284-316, Non-Destructive Evaluation of Reinforced Concrete Structures, 2010.
[5] Angst, U., Elsener B., Larsen, C. K., Vennesland, Ø. J. C. and c. research, “Critical chloride content in reinforced concrete—a review. ” vol. 39, no. 12, pp. 1122-1138, 2009.
[6] ASTM C876-15, “Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.”
[7] ASTM C1202-12, “Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration.”
[8] ASTM G1-03, “Standard Practice for Preparing , and Evaluating Corrosion Test Specimen. ” 2003.
[9] Broomfield, J. P., Rodriguez, L.M. Ortega, and A. M. Garcia. “Corrosion Rate and Life Prediction for Reinforced Concrete Structures. Proceedings of Structure Faults and Repairs.”,1993.
[10] Broomfield, J. P. “Corrosion of Steel in Concrete. Understanding Investigation and Repair.”,1997.
[11] Cady, P. D., & Weyers, R. E. “Chloride penetration and the deterioration of concrete bridge decks.” Cement, concrete and aggregates, 5(2), 81-87, 1983.
[12] Climent, M. A., de Vera, G., López, J. F., Viqueira, E., & Andrade, C. “A Test Method for Measuring Chloride Diffusion Coefficients Through Nonsaturated Concrete: Part I. The Instantaneous Plane Source Diffusion Case.” Cement and concrete Research, 32(7), 1113-1123, 2002.
[13] Collepardi, M., Marcialis, A., & Turriziani, R. “Penetration of Chloride Ions into Cement Pastes and Concretes.” Journal of the American Ceramic Society, 55(10), 534-535, 1972.
[14] Elsener, B., Klinghoffer, O., Frolund, T., Rislund, E., Schiegg, Y. and Böhni, H., “Assessment of reinforcement corrosion by means of galvanostatic pulse technique. ” in Procedings of International Conference on Repair of Concrete Structures-From Theory to Practice in a Marine Environment, pp. 391-400,1997.
[15] Enevoldsen, J. N., Hansson, C. M., & Hope, B. B., “Binding of chloride in mortar containing admixed or penetrated chlorides.” Cement and Concrete Research, 24(8), 1525-1533, 1994.
[16] EN 206-1, “Concrete- Part 1: Specification, performance, production and conformity”, 2000.
[17] Fraczek, J. “Review of Electrochemical Principles as Applied to Corrosion of Steel in a Concrete or Grout Environment.” Special Publication,102, 13-24, 1987.
[18] Frederiksen, J. M. J. T., e. C. A., and J. Kropp, “Chloride threshold values for service life design. ” pp. 397-414, 2000.
[19] Frølund, T., Jensen, M. and Bassler, R., “Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. ” in First International Conference on Bridge Maintenance, Safety and Management IABMAS, 2002.
[20] Fukushima, T., Yoshizaki, Y., Tomosawa, F., Takahashi, K., “Relationship between neutralization depth and concentration distribution of CaCO3–Ca(OH)2 in carbonated concrete”, V. M. Malhotra (Ed.), Advances in Concrete Technology, ACI SP-179, Tokushima, Japan, pp. 347-363, 1998.
[21] Hooton, R. D., & McGrath, P. F. “Issues related to recent developments in service life specifications for concrete structures. Chloride Penetration into Concrete. ” RILEM, L.O. Nilsson and J.P. Olivier, Eds., pp. 388-397, 1995.
[22] Hornbostel, K., Larsen, C. K.,Geiker, M. R. J. C. and C. Composites, “Relationship between concrete resistivity and corrosion rate–a literature review. ” vol. 39, pp. 60-72, 2013.
[23] Hussain, S. E., & Al-Saadoun, S. S., “Effect of cement composition on chloride binding and corrosion of reinforcing steel in concrete,” Cement and Concrete Research, 21(5), 777-794, 1991.
[24] Jones, D. A., “Principles and prevention of corrosion, 2nd ed. ” Prentice Hall, Upper Saddle River, NJ, 152,, 1996.
[25] Kaushik, S. K. & Islam, S., “Suitability of Sea Water for Mixing Structural Concrete Exposed to a Marine Environment”, 1995.
[26] Life 365, “Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of reinforced concrete exposed to chlorides”, Version 2.2.1, 2014.
[27] Liu, T., & Weyers, R. W., “Modeling the dynamic corrosion process in chloride contaminated concrete structures,” Cement and Concrete Research, 28(3), 365-379, 1998.
[28] Morris, W., Vico, A., M. Vazquez, S. R. Sanchez, “Corrosion of Reinforcing Steel Evaluated by Means of Concrete Resistivity Measurements”, Elsevier Science Ltd, Corrosion Science, Vol. 44, pp. 81-99, 2002.
[29] Ngala, V. T., Page, C. L., Parrott, L., & Yu, S. W. “Diffusion in Cementitious Materials: II, Further Investigations of Chloride and Oxygen Diffusion in Well-Cured OPC and OPC/30% PFA Pastes.” Cement and Concrete Research, 25(4), 819-826, 1995.
[30] Otieno, M., Beushausen, H. and Alexander, M., “Prediction of corrosion rate in RC structures-A critical review. ” in Modelling of Corroding Concrete Structures: Springer, pp. 15-37 , 2011.
[31] Page, C. L. & Lambert, P. “Analytical and Electrochemical Investigations of Reinforcement Corrosion.” Contractor Report 30, Transport and Road Research Laboratory(TRRL), Crowthorne, 1986.
[32] Petersen,C.G., “Corrosion rates determined by GalvaPulse© and Gecor 6 compared to corrosion rates determined by weight loss measurement. ” Germann Instruments A/S, 2003.
[33] Polder, R.B., “Test Methods for on Site Measurement of Resistivity of Concrete - a RILEM TC-154 Technique Recommendation”, Elsevier Science Ltd, Construction and Building Materials, Vol. 15, pp. 125-131, 2001.
[34] Quanbing, W. X. X. L. Y., & Shiyuan, H. “The Diffusion Equation of Cl Ion in Cement Mortar.” Journal of building materials, 4, 004, 1991.
[35] Rodriguez, J., Ortega, L.M., Garcia, A.M., “Corrosion Rate Measurements in Concrete Bridges by Means of the Linear Polarization Technique Implemented in a Field Device.” ACI Fall Convention, Minneapolis, Minnesota, November, 1993.
[36] Saleem, M., Shameem, M., Hussain, S., Maslehuddin, M. J. C. and Materials, B., “Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. ” vol. 10, no. 3, pp. 209-214, 1996.
[37] Schiessl, P, “Corrosion of Steel in Concrete, RILEM Report.” Report of the Technical Committee 60-CSC, London, Chapman & Hall, 1988.
[38] Scott, A. N. & Alexander, M. G. “The Influence of Binder Type, Cracking and Cover on Corrosion Rates of Steel in Chloride-Contaminated Concrete” Magazine of Concrete Research, 59(7), pp. 495-505, 2007.
[39] Shah, S. P. “High Performance Concrete: Past, Present and Future. High Performance Concrete-Worka-bility, Strength and Durability.” Hong Kong: Hong Kong University of Science and Technology, 3-29, 2000.
[40] Shalon, R. and Rapheal, M., “Influence of sea water on corrosion of reinforcement. ” in Journal Proceedings, 1959, vol. 55, no. 6, pp. 1251-1268.1959.
[41] Shamsad Ahmad,“An experimental study on correlation between concrete resistivity and reinforcement corrosion rate. ” vol. 61, no. 3, pp. 158-165, 2014.
[42] Sidney, M., & Francis, Y. J. “Concrete.” Prentice-Hall, N. J., 1981.
[43] SINTEF Building and Infrastructure, “Modelling of Reinforcement Corrosion in Concrete – State of the Art. ” COIN Project Report, 2008.
[44] Song, G. J. C. and C. Composites, “Theoretical analysis of the measurement of polarisation resistance in reinforced concrete. ” vol. 22, no. 6, pp. 407-415, 2000.
[45] Stern, M., & Geary, A. L. “Electrochemical polarization I. A theoretical analysis of the shape of polarization curves,” Journal of the electrochemical society, 104(1), 56-63, 1957.
[46] Thomas, M., “Chloride thresholds in marine concrete. ” Cement and Concrete Research,vol. 26, on.4,pp.513-519, 1996.
[47] Thomas, M. D., & Bamforth, P. B.” Modelling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag.” Cement and Concrete Research, 29(4), 487-495, 1999.
[48] Thomas, M., Matthews, J. J. C. and C. Composites, “Performance of pfa concrete in a marine environment––10-year results. ” vol. 26, no. 1, pp. 5-20, 2004.
[49] Uhlig, H. H., & Revie R. W., “Corrosion and Corrosion Control.” 3rd edition, Wiley Interscience, N.Y., pp. 28-35, 1985.
[50] Vu, K. & Stewart, M. G. “Structural Reliability of Concrete Bridges Including Improved Chloride-Induced Corrosion Models.” Structural Safety, 22(4), pp. 313-333, 2000.
[51] Vu, K., Stewart, M. G. & Mullard, J., “Corrosion-Induced Cracking : Experimental Data and Predictive Models” ACI Structural Journal, 102(5), pp. 719-726, 2005.
[52] Winslow, D. N., Cohen, M. D., Bentz, D. P., Snyder, K. A., & Garboczi, E. J. “Percolation and pore structure in mortars and concrete.” Cement and concrete research, 24(1), 25-37, 1994.
[53] Yalcyn, H. & Ergun, M. “The Prediction of Corrosion Rates of Reinforcing Steels in Concrete.” Cement and Concrete Research, 26(10), pp.1593-1599.,1996.
[54] 蔡得時,「用氯化物之滲透評估混凝土在海洋環境之品質及保護層之厚度」,防蝕工程,6(2),47-56,1992。
[55] 蔡立倫,「含腐蝕鋼筋之鋼筋混凝土梁耐震行為」,碩士,營建工程系,國立臺灣科技大學,台北市,2010。
[56] 蔡宜靜,「RC建物耐久與耐震性能整合評估系統開發與建置」,碩士,營建工程系,國立臺灣科技大學,台北市,2018。
[57] 陳育聖,「北台灣沿海地區氯鹽環境與混凝土耐久性質之研究」,博士,土木工程學研究所,國立臺灣大學,台北市,2011。
[58] 戴群軒,「混凝土內鋼筋腐蝕與氯離子濃度之研究」,碩士,土木工程學研究所,國立臺灣大學,台北市,2012。
[59] 行政院原子能委員會放射性物料管理局研究計畫,「最終處置場混凝土工程障壁耐久性評估模式之建立」,國立台灣科技大學營建系,2004。
[60] 官家緯,「粗粒料用量對混凝土傳輸行為之影響」,碩士,材料工程研究所,國立臺灣海洋大學,基隆市,2011。
[61] 韓樹漢,「新拌及硬固混凝土氯離子含量關係之研究」,碩士,材料工程研究所,國立臺灣海洋大學,基隆市,2012。
[62] 洪定海,「混凝土中鋼筋的腐蝕與保護」,中國鐵道出版社,1988。
[63] 黃然、紀茂傑、鄭安、謝紹恒,「鋼筋混凝土於中性化及氯離子複合作用下腐蝕劣化之研究」,內政部建築研究所委託研究期末報告,2013。
[64] 黃大展,「考量鋼筋不同腐蝕型態及混凝土內氯離子濃度之長期腐蝕電流模型建立實驗設計」,碩士論文,土木工程學研究所,國立臺灣大學,2018。
[65] 日本土木學會,「混凝標準示方書(維持管理編)」,2001。
[66] 金螢來、野口貴文、長井宏憲,「腐蝕形態を考慮した腐蝕鉄筋の力学的性能の評價に関する研究」,日本建築学会構造系論文集,第73卷,第624号,pp.181-188,2008。
[67] 經濟部標準檢驗局,「中華民國國家標準CNS 13465 A3343新拌混凝土中水溶性氯離子含量試驗法」,經濟部標準檢驗局,台北,10頁,2014。
[68] 經濟部標準檢驗局,「中華民國國家標準CNS 3090 A2040預拌混凝土」, 經濟部標準檢驗局,台北,第16頁,2015。
[69] 柯賢文,「腐蝕及其防治」,全華科技圖書有限公司,1985。
[70] 賴可捷,「混凝土中鋼筋腐蝕之臨界氯離子濃度探討」,碩士,土木工程學研究所,國立臺灣大學,台北市,2015。
[71] 梁智信,「濱海地區混凝土中氯離子擴散行為之研究」,博士,材料工程研究所,國立臺灣海洋大學,基隆市,2013。
[72] 林致緯,「以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為」,碩士, 材料工程研究所,國立臺灣海洋大學,基隆市,2005。
[73] 劉秉京,「混凝土結構耐久性設計」,人民交通出版社,2007。
[74] 劉彥志,「飛灰混凝土傳輸行為之研究」,碩士,材料工程研究所,國立臺灣海洋大學,基隆市,2011。
[75] 秋山充良、伊東佑香、鈴木基行,「鋼筋混凝土構造物於鹽害環境下耐久可靠度設計之相關基礎研究」,日本土木學會論文集E,第 62卷,第 2期,地 385-401頁,2006。
[76] 饒正,「港灣環境下高性能混凝土結構體之性質研究(三)」,交通部運輸研究所港灣技術研究中心,2000。
[77] 施锦杰、孙伟,「混凝土中钢筋腐蚀速率模型研究进展」,2012。
[78] 王駿紳,「快速評估貯鹽浸漬試驗之水泥砂漿氯離子擴散行為」,碩士,材料工程研究所,國立臺灣海洋大學,基隆市,2012。
[79] 王品方,「水泥砂漿中鋼筋腐蝕之臨界氯離子濃度探討」,碩士,土木工程學研究所,國立臺灣大學,台北市,2013。
[80] 詹穎雯,「臺灣地區大氣中氯鹽與橋梁腐蝕劣化環境之研究總期末報告」, 交通部公路總局,2015。
[81] 張雲蓮、史美倫、陳志源,「纖維砂漿的電化學振蕩現象」,建築材料學報,Vol. 8 , No. 5, 2005。
[82] 張道光、陳桂清、饒正、柯正龍,「港灣鋼筋混凝土耐久性之研究」,交通部運輸研究所,2006。
[83] 卓奕杉,「RC梁鋼筋腐蝕之剪力行為評估與縱向鋼筋腐蝕之耐震行為」,碩士,營建工程系,國立臺灣科技大學,台北市,2012。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74019-
dc.description.abstract鋼筋混凝土為現今常用的建築結構,外界有害物質侵入鋼筋混凝土中會造成鋼筋腐蝕,而耐震評估中主要以鋼筋的重量損失率來折減鋼筋的性能,故如何有效且準確的得到鋼筋的重量損失率將是一大重要課題。鋼筋的理論重量損失率可以經由量測的腐蝕電流密度再透過法拉第定律計算而得,故影響腐蝕電流密度量測的因子將間接的影響鋼筋理論重量損失率,進而影響耐震評估中對於鋼筋性能的折減。
  現地在進行腐蝕電流密度量測時尚未考慮到介質電阻對於腐蝕電流密度的影響,因此本實驗以通電腐蝕法將鋼筋腐蝕至不同的重量損失率(1~5%、10%)來模擬鋼筋不同的腐蝕程度,並且觀察鋼筋不同腐蝕程度對於腐蝕電流密度的影響,以及透過此方式來預測無腐蝕鋼筋達到訂定的重量損失率(1~5%、10%)時的腐蝕電流密度值,而後再將鋼筋鑲入不同配比的混凝土以及科技海綿中來觀察不同介質中腐蝕電流密度的發展,並且使用Gecor 8、GalvaPulse及AutoLab量測腐蝕電流密度以及四極式電阻量測儀來追蹤混凝土電阻值的成長,最後再將腐蝕電流密度對應時間的關係積分出鋼筋的理論重量損失率,並在破壞試體後驗證三台腐蝕電流儀對於法拉第定律的適用性。
  本研究的初步實驗結果顯示,鋼筋表面的鈍化膜破壞前,主要由氯離子的濃度控制鋼筋的腐蝕電流密度,而當鈍化膜破壞後,混凝土的電阻值進一步控制了鋼筋陰陽極間離子與水分的傳輸,對鋼筋腐蝕過程影響較大;不同腐蝕程度的鋼筋於混凝土中所呈現的腐蝕電流密度趨勢皆較為相近,且其初始腐蝕電流密度值的大小沒有明顯的與重量損失率的大小有關;觀察不同配比的混凝土中,當混凝土齡期較短時,不同的水灰比及氯鹽量對於混凝土的電阻值較無影響,而是需要充裕的時間才會開始造成差異。
  平穩的腐蝕電流密度能夠用來預測無腐蝕鋼筋未來的腐蝕電流密度以及得知在不同混凝土配比中其穩定的腐蝕電流密度,實驗至今所量測的結果尚未得到平穩的腐蝕電流密度值,而後續需要持續進行腐蝕電流密度以及混凝土電阻的量測,觀察後期平穩值的發展趨勢,並對本研究之初步實驗結果進行驗證。
zh_TW
dc.description.abstractReinforced concrete is one of the most commonly used construction materials in the civil engineering industry, and reinforcement corrosion is a major problem. The corroded steel rebars will reduce the seismic capacity of reinforced concrete. In the seismic evaluation, the performance of the steel rebars is mainly reduced by its weight loss. Therefore, it is an important issue to obtain effective and accurate weight loss of steel rebars. The theoretical weight loss of steel rebars can be calculated by introducing corrosion current density into Faraday's law. Therefore, the factors affecting corrosion current density will indirectly influence the theoretical weight loss of steel rebars, and further affect the seismic evaluation.
  The influence of resistance on corrosion current density has not been considered in the corrosion current density measurement. In this study, the steel rebars were badly corroded by electrical corrosion method to simulate different weight loss (1~5%, 10%) of steel rebars, and then the steel rebars were inserted in concrete and sponges. Corrosion current density will be measured by Gecor 8、GalvaPulse and AutoLab, and the resistivity of concrete will be measured by four-point Wenner array probe technique. Observe the influence of different resistivity of concrete on corrosion current density and the effect of different corrosion degrees of steel rebars on corrosion current density. Finally, using the relationship of the corrosion current density to the time to integrate the theoretical weight loss of the steel rebars, and verify the applicability of Faraday's law for each instrument after the expected amount of corrosion is reached.
  The preliminary results show that when concrete was at an early age, the difference of water-cement ratio and concentrations of chloride ion has no effect on the resistivity of concrete, and it takes plenty of time to make a difference. In addition, before the failure of the passive film on steel rebars, the corrosion current density of the steel rebars is mainly controlled by concentrations of chloride ion. When the passive film is destroyed, the resistivity of concrete controls the transmission of ions and moisture between the cathode and anode in steel rebars, which has significant impacts on the corrosion process. Moreover, the trends of corrosion current density in the steel rebars with different corrosion degrees are similar, and the initial corrosion current density values are not greatly related to the weight loss of steel rebars.
  The stable corrosion current density can be used to predict the future corrosion current density of non-corrosion steel rebars and to know the stable values in different media. However, the measured values have not reached stable values recently. It requires to measure the corrosion current density and the resistivity of concrete continuously in the future, and observes the trends of the stable values, and then verifies the preliminary experimental results in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:16:59Z (GMT). No. of bitstreams: 1
ntu-108-R06521235-1.pdf: 5034598 bytes, checksum: ffb6bf8ce8e317eb9cad422e705b8ac0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
摘要 iii
ABSTRACT v
目錄 vii
表目錄 xi
圖目錄 xiii
照片目錄 xviii
第一章、緒論 1
1.1 動機與目的 1
1.2 研究內容與方法 2
1.3 研究流程圖 3
第二章、文獻回顧 4
2.1 混凝土中之氯離子 4
2.1.1 氯離子之來源與存在形式 4
2.1.2 氯離子之傳輸路徑及其機制 5
2.1.3 粒料對氯離子傳輸之影響 7
2.2 氯離子在混凝土中的擴散行為 8
2.2.1 擴散方程式與擴散係數 8
2.2.2 水灰比對擴散係數之影響 10
2.2.3 水化時間對擴散係數之影響 12
2.3 混凝土中氯離子含量之檢測與評估 13
2.3.1 氯離子濃度標準值 13
2.3.2 定義臨界氯離子濃度 16
2.3.3 檢測程序 18
2.3.4 本土化飛來鹽預測公式 18
2.4 鋼筋腐蝕 20
2.4.1 鋼筋之腐蝕機制 21
2.4.2 影響混凝土中鋼筋腐蝕之因素 22
2.4.3 影響鋼筋表面鈍化膜剝落之因素 24
2.5 鋼筋混凝土中鋼筋腐蝕之檢測方法 25
2.5.1 腐蝕電位檢測法(Corrosion Potential) 25
2.5.2 腐蝕電流密度檢測法(Corrosion Current Density) 27
2.5.3 混凝土電阻係數檢測法(Electrical Resistance) 27
2.5.4 重量損失檢測法(Weight Loss) 29
2.5.5 腐蝕電流密度預測模型 30
2.6 腐蝕電流儀之量測原理 35
2.6.1 Gecor 8 量測原理 36
2.6.2 GalvaPulse量測原理 36
2.6.3 AutoLab量測原理 38
2.7 鋼筋腐蝕電流密度與腐蝕量之關係 38
2.7.1 Faraday's Law 38
2.7.2 Faraday's Law之應用 39
2.8 影響混凝土電阻之因子 40
2.8.1 水灰比對混凝土電阻之影響 40
2.8.2 氯離子對混凝土電阻之影響 41
2.8.3 齡期對於混凝土電阻影響 42
2.8.4 混凝土溫度對於電阻之影響 43
2.9 影響腐蝕電流密度量測之因子 44
2.9.1 腐蝕電流儀的量測原理 44
2.9.2 鋼筋混凝土的介質電阻 45
2.9.3 鋼筋混凝土的保護層厚度 47
2.9.4 鋼筋混凝土所處的環境溫度 49
2.10 通電加速腐蝕 50
2.10.1 通電腐蝕法的介紹 50
2.10.2 腐蝕區域與通電電流之關係 51
2.10.3 腐蝕量的預測 52
第三章、實驗計畫 53
3.1 鋼筋通電腐蝕前置實驗 53
3.1.1 實驗目的 53
3.1.2 實驗架構 53
3.1.3 實驗參數之決定 55
3.1.4 試驗材料 57
3.1.5 試體設計 60
3.1.6 試體製作 61
3.1.7 試驗儀器設備 63
3.2 預腐蝕鋼筋於添加氯鹽之混凝土實驗 64
3.2.1 實驗內容 64
3.2.2 試驗材料 67
3.2.3 實驗設計 72
3.2.4 配比設計 74
3.2.5 試體設計 76
3.2.6 試體製作 78
3.2.7 試驗儀器設備 81
3.2.8 試驗項目 84
第四章、初步實驗結果與討論 86
4.1 鋼筋通電腐蝕實驗 86
4.2 預腐蝕鋼筋(10%)於不同介質內之實驗 92
4.2.1 相同水灰比不同氯鹽量下電阻值之差異 92
4.2.2 相同氯鹽量不同水灰比下電阻值之差異 95
4.2.3 相同水灰比不同氯鹽量下腐蝕電流密度之差異 98
4.2.4 相同氯鹽量不同水灰比下腐蝕電流密度之差異 110
4.2.5 預腐蝕鋼筋於海棉內之量測結果 124
4.2.6 Faraday's Law計算鋼筋重量損失量 131
4.3 預腐蝕鋼筋(1~5%)於添加氯鹽之混凝土實驗 137
4.3.1 混凝土介質電阻量測結果 137
4.3.2 腐蝕電流密度量測結果 139
4.3.3 Faraday's Law計算鋼筋重量損失量 142
第五章、未來實驗評估指標 144
5.1 混凝土電阻成長趨勢 144
5.2 腐蝕電流密度成長趨勢 144
5.3 鋼筋重量損失法量測結果 145
第六章、結論與建議 146
6.1 結論 146
6.2 建議 147
參考文獻 149
dc.language.isozh-TW
dc.subject腐蝕電流密度zh_TW
dc.subject氯離子zh_TW
dc.subject腐蝕zh_TW
dc.subject法拉第定律zh_TW
dc.subject鋼筋重量損失率zh_TW
dc.subject通電腐蝕法zh_TW
dc.subject混凝土電阻值zh_TW
dc.subjectFaraday’s lawen
dc.subjectCorrosionen
dc.subjectCorrosion current densityen
dc.subjectChloride ionen
dc.subjectResistivity of concreteen
dc.subjectWeight loss of steel rebaren
dc.subjectElectrical corrosion methoden
dc.title不同腐蝕程度之鋼筋在不同介質中之腐蝕電流密度實驗研究zh_TW
dc.titleExperimental Investigation for Corrosion Current Density of Corroded Steel Rebars with Different Corrosion Degrees in Different Mediaen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹穎雯,楊仲家
dc.subject.keyword通電腐蝕法,腐蝕,腐蝕電流密度,氯離子,混凝土電阻值,鋼筋重量損失率,法拉第定律,zh_TW
dc.subject.keywordElectrical corrosion method,Corrosion,Corrosion current density,Chloride ion,Resistivity of concrete,Weight loss of steel rebar,Faraday’s law,en
dc.relation.page155
dc.identifier.doi10.6342/NTU201903575
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved