請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73978
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳耀銘(Yaow-Ming Chen) | |
dc.contributor.author | Che-Wei Chang | en |
dc.contributor.author | 張哲維 | zh_TW |
dc.date.accessioned | 2021-06-17T08:15:36Z | - |
dc.date.available | 2019-08-20 | |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power Electronics as Efficient Interface in Dispersed Power Generation Systems,” IEEE Trans. on Power Electron., vol. 19, no. 5, pp. 1184-1194, Sept. 2004.
J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. P. Guisado, M. Á. M. Prats, J. I. León, and N. Moreno-Alfonso, “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Trans. on Industr. Electron., vol. 53, no. 4, pp. 1002-1016, June 2006. N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid,” IEEE Trans. on Power Electron., vol. 22, no. 2, pp. 4734-4749, March. 2007. J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of Power Converters in AC Microgrids,” IEEE Trans. on Power Electron., vol. 27, no. 11, pp. 4734-4749, Nov. 2012. P. Sun, C. Liu, J. Lai, and C. Chen, 'Grid-Tie Control of Cascade Dual-Buck Inverter With Wide-Range Power Flow Capability for Renewable Energy Applications,' in IEEE Trans. on Power Electron., vol. 27, no. 4, pp. 1839-1849, April 2012. J. Han, C. Choi, W. Park, I. Lee, and S. Kim, 'Smart home energy management system including renewable energy based on ZigBee and PLC,' in IEEE Trans. on Consumer Electron., vol. 60, no. 2, pp. 198-202, May 2014. S. Amamra, K. Meghriche, A. Cherifi, and B. Francois, 'Multilevel Inverter Topology for Renewable Energy Grid Integration,' in IEEE Trans. on Industr. Electron., vol. 64, no. 11, pp. 8855-8866, Nov. 2017. Y. Fang, K. Jia, Z. Yang, Y. Li, and T. Bi, 'Impact of Inverter-Interfaced Renewable Energy Generators on Distance Protection and an Improved Scheme,' in IEEE Trans. on Industr. Electron., vol. 66, no. 9, pp. 7078-7088, Sept. 2019. J. S. Lai and F. Z. Peng, “Multilevel Converters-A New Breed of Power Converters,” IEEE Trans. on Industr. Appl., vol. 32, no. 3, pp. 509-517, May/June 1996. J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel Inverters: A Survey of Topologies, Controls, and Applications,” IEEE Trans. on Industr. Electron., vol. 49, no. 4, pp. 724-738, Aug. 2002. M. R. Baiju, K. K. Mohapatra, R. S. Kanchan, and K. Gopakumar, “A Dual Two-Level Inverter Scheme With Common Mode Voltage Elimination for an Induction Motor Drive,” IEEE Trans. on Power Electron., vol. 19, no. 3, pp. 794-805, May 2004. J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, “A Survey on Neutral-Point-Clamped Inverters,” IEEE Trans. on Industr. Electron., vol. 57, no. 7, pp. 2219-2230, July 2010. T. Hornik and Q. C. Zhong, “Parallel PI Voltage–H∞ Current Controller for the Neutral Point of a Three-Phase Inverter,” IEEE Trans. Industr. Electron., vol. 60, no. 4, pp. 1335-1343, April 2013. Y. Chen and B. T. Ooi, “Multimodular Multilevel Rectifier/Inverter Link With Independent Reactive Power Control,” in IEEE Trans. on Power Deliv., vol. 13, no. 3, pp. 902-908, July 1998. M. K. Mishra, A. Joshi, and A. Ghosh, “Control Schemes for Equalization of Capacitor Voltages in Neutral Clamped Shunt Compensator,” in IEEE Trans. on Power Deliv., vol. 18, no. 2, pp. 538-544, April 2003. G. Borghetti, M. Carpaneto, M. Marchesoni, P. Tenca, and L. Vaccaro, “Energy Efficiency Improvement in AC/DC/AC Diode-Clamped Multilevel Conversion Systems,” in IEEE ISPE, June 2008. A. Shukla, A. Ghosh, and A. Joshi, “Improved Multilevel Hysteresis Current Regulation and Capacitor Voltage Balancing Schemes for Flying Capacitor Multilevel Inverter,” in IEEE Trans. on Power Electron., vol. 23, no. 2, pp. 518-529, March 2008. J. Liang, T. C. Green, C. Feng, and G. Weiss, “Increasing voltage utilization in split-link, four-wire inverters,” in IEEE Trans. on Power Electron., vol. 24, no. 6, pp. 1562-1569, June 2009. Z. Ramli, J. Jamaludin, and N. Abdrahim, “Buck-boost chopper for DC capacitor voltage balancing in switchsharing-based inverter,” in IEEE 4th CEAT, Nov. 2016. C. Newton and M. Sumner, “Novel technique for maintaining balanced internal DC link voltages in diode clamped five-level inverters,” in IEE Proceedings-Electric Power Appl., vol. 146, no. 3, pp. 341-349, May 1999. W. Zhao, X. Ruan, D. Yang, X. Chen, and L. Jia, “Neutral Point Voltage Ripple Suppression for a Three-Phase Four-Wire Inverter With an Independently Controlled Neutral Module,” in IEEE Tran. on Industr. Electron., vol. 64, no. 4, pp. 2608-2619, April 2017. Z. Lin, X. Ruan, L. Jia, W. Zhao, H. Liu, and P. Rao, “Optimized Design of the Neutral Inductor and Filter Inductors in Three-Phase Four-Wire Inverter With Split DC-Link Capacitors,” in IEEE Trans. on Power Electron., vol. 34, no. 1, pp. 247-262, Jan. 2019. Y. Chen, B. Mwinyiwiwa, Z. Wolanski, and B. T. Ooi, “Unified Power Flow Controller (UPFC) Based on Chopper Stabilized Diode-Clamped Multilevel Converters,” IEEE Trans. on Power Electron., vol. 15, no. 2, pp. 258-267, March 2002. Y. Cheng, C. Qian, M. L. Crow, S. Pekarek, and S. Atcitty, “A Comparison of Diode-Clamped and Cascaded Multilevel Converters for a STATCOM With Energy Storage,” in IEEE Trans. on Industr. Electron., vol. 53, no. 5, pp. 1512-1521, Oct. 2006. A. Shukla, A. Ghosh, and A. Joshi, “Control Schemes for DC Capacitor Voltages Equalization in Diode-Clamped Multilevel Inverter-Based DSTATCOM,” in IEEE Trans. on Power Deliv., vol. 23, no. 2, pp. 1139-1149, April 2008. H. Akagi, H. Fujita, S. Yonetani, and Y. Kondo, “A 6.6-kV Transformerless STATCOM Based on a Five-Level Diode-Clamped PWM Converter: System Design and Experimentation of a 200-V 10-kVA Laboratory Model,” in IEEE Trans. on Industr. Appli., vol. 44, no. 2, pp. 672-680, March-April 2008. S. Srikanthan and M. K. Mishra, “DC Capacitor Voltage Equalization in Neutral Clamped Inverters for DSTATCOM Application,” IEEE Trans. on Industr. Electron., vol. 57, no. 8, pp. 2768-2775, Aug. 2010. Q. C. Zhong, L. Hobson, and M. Jayne, “Generating a neutral point for 3-phase 4-wire DC-AC converters,” in IEEE Compatibility in Power Electron., pp. 126-133, June 2005. Y. Lo, C. Ho, and J. Wang, “Elimination of the Output Voltage Imbalance in a Half-Bridge Boost Rectifier,” in IEEE Trans. on Power Electron., vol. 22, no. 4, pp. 1352-1360, July 2007. M. T. Tsai, C. F. Wang, and Z. H. Yu, “Single-Phase Half-bridge Rectifier with a Novel DC Bus Balance Controller,” in IEEE IECON, pp. 1956-1961, Nov. 2007. R. Ghosh and G. Narayanan, “Control of Three-Phase, Four-Wire PWM Rectifier,” in IEEE Trans.s on Power Electron., vol. 23, no. 1, pp. 96-106, Jan. 2008. Q. C. Zhong, J. Liang, G. Weiss, C. M. Feng, and T. C. Green, “H^∞ of the Neutral Point in Four-Wire Three-Phase DC-AC Converters,” in IEEE Trans. on Industr. Electron., vol. 53, no. 5, pp. 1594-1602, Oct. 2006. D. Bozalakov, B. Meersman, A. Bottenberg, J. Rens, J. Desmet, and L. Vandevelde, “Dc-bus voltage balancing controllers for split dc-link four-wire inverters and their impact on the quality of the injected currents,” in CIRED, vol. 2017, no. 1, pp. 564-568, Oct 2017. R. M. Tallam, R. Naik, and T. A. Nondahl, “A carrier-based PWM scheme for neutral-point voltage balancing in three-level inverters,” in IEEE Trans. on Industr. Appl., vol. 41, no. 6, pp. 1734-1743, Nov.-Dec. 2005. A. K. Gupta and A. M. Khambadkone, “A Simple Space Vector PWM Scheme to Operate a Three-Level NPC Inverter at High Modulation Index Including Overmodulation Region, With Neutral Point Balancing,” in IEEE Trans. on Industr. Appl., vol. 43, no. 3, pp. 751-760, May-June 2007. J. Holtz and N. Oikonomou, “Neutral Point Potential Balancing Algorithm at Low Modulation Index for Three-Level Inverter Medium-Voltage Drives,” in IEEE Trans. on Industr. Appl., vol. 43, no. 3, pp. 761-768, May-June 2007. O. Bouhali, B. Francois, E. M. Berkouk, and C. Saudemont, “DC Link Capacitor Voltage Balancing in a Three-Phase Diode Clamped Inverter Controlled by a Direct Space Vector of Line-to-Line Voltages,” in IEEE Trans. on Power Electron., vol. 22, no. 5, pp. 1636-1648, Sept. 2007. S. Busquets-Monge, S. Alepuz, J. Rocabert, and J. Bordonau, “Pulsewidth Modulations for the Comprehensive Capacitor Voltage Balance of n-Level Three-Leg Diode-Clamped Converters,” in IEEE Trans. on Power Electron., vol. 24, no. 5, pp. 1364-1375, May 2009. J. Zaragoza, J. Pou, S. Ceballos, E. Robles, C. Jaen, and M. Corbalan, 'Voltage-Balance Compensator for a Carrier-Based Modulation in the Neutral-Point-Clamped Converter,' in IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 305-314, Feb. 2009. W. Jiang, S. Du, L. Chang, Y. Zhang, and Q. Zhao, “Hybrid PWM Strategy of SVPWM and VSVPWM for NPC Three-Level Voltage-Source Inverter,” in IEEE Trans. on Power Electron., vol. 25, no. 10, pp. 2607-2619, Oct. 2010. S. D. G. Jayasinghe, D. M. Vilathgamuwa, and U. K. Madawala, “Diode-Clamped Three-Level Inverter-Based Battery/Supercapacitor Direct Integration Scheme for Renewable Energy Systems,” in IEEE Trans. on Power Electron., vol. 26, no. 12, pp. 3720-3729, Dec. 2011. F. Li, F. He, Z. Ye, T. Fernando, X. Wang, and X. Zhang, “A Simplified PWM Strategy for Three-Level Converters on Three-Phase Four-Wire Active Power Filter,” in IEEE Trans. on Power Electron., vol. 33, no. 5, pp. 4396-4406, May 2018. H. Chen, M. Tsai, Y. Wang, and P. Cheng, “A Modulation Technique for Neutral Point Voltage Control of the Three-Level Neutral-Point-Clamped Converter,” in IEEE Trans. on Industr. Appl., vol. 54, no. 3, pp. 2517-2524, May-June 2018. R. Srinivasan and R. Oruganti, “A Unity Power Factor Converter Using Half-Bridge Boost Topology” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 487-500, May 1998. F. Luo, K. H. Loo, and Y. M. Lai, “Simple carrier-based pulse-width modulation scheme for three-phase four-wire neutral point-clamped inverters with neutral-point balancing,” IET Power Electron., vol. 9, no. 3, pp. 365-376, Feb. 2016. C. Newton and M. Sumner, “Neutral Point Control for Multi-Level Inverters: theory, design and operational limitations,” IEEE IAS '97, 1997. G. Scheuer and H. Stemmler, “Analysis of A 3-level-vsi Neutral-point-control For Fundamental Frequency Modulated Svc-applications,” in 6th Int. Conf. on AC and DC Power Transmission, pp. 303-310, April/May 1996. J. Shen, S. Schröder, R. Rösner, and S. El-Barbari, “A Comprehensive Study of Neutral-Point Self-Balancing Effect in Neutral-Point-Clamped Three-Level Inverters,” in IEEE Trans. on Power Electr., vol. 26, no. 11, pp. 3084-3095, Nov. 2011. Yu-Kang Lo, Tzu-Herng Song, and Huang-Jen Chiu, “Analysis and elimination of voltage imbalance between the split capacitors in half-bridge boost rectifiers,” in IEEE Trans. on Industr. Electron., vol. 49, no. 5, pp. 1175-1177, Oct. 2002. M. I. M. Montero, E. R. Cadaval, and F. B. González, “Comparison of Control Strategies for Shunt Active Power Filters in Three-Phase Four-Wire Systems,” IEEE Trans. on Power Electron., vol. 22, no. 1, pp. 229-236, Jan. 2007. Bart Meersman, Bert Renders, Lieven Degroote, Tine Vandoorn, Jeroen De Kooning, and Lieven Vandevelde, “Overview of three-phase inverter topologies for distributed generation purposes,” in i-SUP 2010: Innovation for Sustainable Production, April 2010. M. Dai, M. N. Marwali, J. W. Jung, and A. Keyhani, “A Three-Phase Four-Wire Inverter Control Technique for a Single Distributed Generation Unit in Island Mode,” in IEEE Trans. on Power Electron., vol. 23, no. 1, pp. 322-331, Jan. 2008. D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” in IEEE Trans. on Industr. Appl., vol. IA-21, no. 3, pp. 562-570, May 1985. L. Malesani and P. Tenti, “A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency,” in IEEE Trans. on Industr. Appl., vol. 26, no. 1, pp. 88-92, Jan./Feb. 1990. M. A. Rahman, T. S. Radwan, A. M. Osheiba, and A. E. Lashine, “Analysis of current controllers for voltage-source inverter,” in IEEE Trans. on Industr. Electon., vol. 44, no. 4, pp. 477-485, Aug. 1997. M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” in IEEE Trans. on Industr. Electon., vol. 45, no. 5, pp. 691-703, Oct. 1998. C. H. Chang, F. Y. Wu, and Y. M. Chen, “Modularized bidirectional grid-connected inverter with constant-frequency asynchronous sigma–delta modulation,” in IEEE Trans. on Industr. Electon., vol. 59, no. 11, pp. 4088-4100, Nov. 2012. E. Afshari, G. R. Moradi, R. Rahimi, B. Farhangi, Y. Yang, F. Blaabjerg, and S. Farhangi, “Control strategy for three-phase grid-connected PV inverters enabling current limitation under unbalanced faults,” in IEEE Trans. on Industr. Electon., vol. 64, no. 11, pp. 8908-8918, Nov. 2017. C. Y. Tang, L. H. Kao, Y. M. Chen, and S. Y. Ou, “Dynamic power decoupling strategy for three-phase PV power systems under unbalanced grid voltages,” in IEEE Trans. on Sustainable Energy, vol. 10, no. 2, pp. 540-548, April 2019. C. W. Chang, T. W. Tsai, and Y. M. Chen, “Split-Capacitor Self-Balancing of Single-Phase Half-Bridge Inverters,” in ICPE 2019-ECCE Asia, May 2019. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73978 | - |
dc.description.abstract | 本論文推導了一個能描述三相四線式併網換流器中分離電容電壓之數學模型,由於類比轉數位訊號誤差會導致分離電容電壓的不平衡,推導此數學模型的目的在於釐清類比轉數位訊號誤差對分離電容電壓之影響。當數位訊號處理器在偵測輸出電流之回授訊號過程中,類比轉數位訊號過程中容易產生誤差,即使輸出電流已受良好的調節,此誤差仍會使得數位訊號處理器接收到不準確的輸出電流值,在此情況下,輸出電流將因此而產生偏移並進一步造成分離電容電壓的不平衡。最終,不平衡的分離電容電壓將因觸發直流端電壓保護而使換流器被迫停機,或是損害直流端電容器的壽命。
為了驗證上述之分析,本論文推導了一個能精準預測分離電容電壓之值及波形之數學模型。由於三相四線式換流器之基本架構為三個單相半橋式換流器所組成,因此數學模型將首先以單相半橋式電路架構進行推導。接著,數學方程式能延伸至三相四線式電路架構進而推導出分離電容電壓之數學模型。本論文將會詳細介紹並說明由類比轉數位訊號誤差造成不平衡分離電容電壓之機制,及數學模型推導之細節,並將由電腦模擬及一組3kVA原型機之實驗結果來驗證推導出的數學模型之準確性。 | zh_TW |
dc.description.abstract | This thesis derives a mathematical model for the unbalanced split-capacitor voltages caused by the analog-to-digital converter (ADC) signal deviation in three-phase four-wire (3P4W) grid-tied inverters. The ADC is a system that converts an analog signal into a digital signal and the ADC signal deviation can occur easily while utilizing digital signal processor (DSP) to sense the feedback signal of output current. As a result, the DSP will then receive an inaccurate value of the output current even though the output current has been well regulated. The ADC signal deviation will mislead the DSP to generate an offset on the output current and further causes the variation of split-capacitor voltages. Eventually, the unbalanced capacitor voltages will trigger the dc-link voltage protection or damage the lifetime of the capacitors.
To validate the above analysis, the mathematical model for unbalanced split-capacitor voltages is derived in this thesis. The derived mathematical model can accurately predict the waveforms and values of the capacitor voltages. The mathematical model will first be established under the circuit topology of single-phase half-bridge (SPHB) inverter, which is the basic structure of 3P4W inverter. After that, the equations can be extended to 3P4W topology and the mathematical model for 3P4W inverter can be derived. Details of the mechanism and the mathematical derivations are presented. Moreover, circuit-level computer simulations as well as hardware experimental results of a 3kVA prototype circuit are shown to verify the accuracy of the derived mathematical model. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:15:36Z (GMT). No. of bitstreams: 1 ntu-108-R06921073-1.pdf: 5800202 bytes, checksum: 626f8ed6c452bcbb56ebb7b3bfea9054 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | CONTENTS
口試委員審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES x ABBREVIATIONS xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Paper Review and Motive 2 1.3 Outline 5 Chapter 2 Three-Phase Grid-Tied Inverters 6 2.1 Circuit Configuration 6 2.2 Sinusoidal Pulse Width Modulation 8 2.3 Per-Phase Control Method 10 Chapter 3 Mathematical Model for Unbalanced Capacitor Voltages 14 3.1 Mechanism Analysis 14 3.2 Mathematical Model for SPHB Inverters 16 3.2.1 Equations Establishment 17 3.2.2 Mathematical Derivation 19 3.3 Mathematical Model for 3P4W Inverters 26 3.3.1 Equations Establishment 26 3.3.2 Mathematical Derivation 28 3.4 Computer Simulation and Verification 35 3.4.1 Simulation Verifications of SPHB Inverters 36 3.4.2 Simulation Verifications of 3P4W Inverters 43 Chapter 4 Hardware Implementation 53 4.1 Power Stage 54 4.2 Control Stage 57 4.2.1 Microcontroller 57 4.2.2 Peripheral Circuit 58 4.2.3 Voltage and Current Sensing Circuit 61 4.2.4 Driver Circuit 63 4.3 System Control Procedure 65 4.3.1 Main Program 65 4.3.2 ADC Interrupt Function 67 4.3.3 XINT interrupt Function 68 Chapter 5 Experimental Verification 70 5.1 Circuit Diagram and Test Condition 70 5.2 Experimental Results of SPHB Inverter 71 5.3 Experimental Results of 3P4W Inverter 76 Chapter 6 Conclusions and Future Researches 84 6.1 Summary and Major Contributions 84 6.2 Suggestions for Future Researches 85 REFERENCES 86 | |
dc.language.iso | en | |
dc.title | 三相四線併網換流器之分離電容電壓數學模型推導與驗證 | zh_TW |
dc.title | Derivation and Verification of Mathematical Model for Split-Capacitor Voltages in Three-Phase Four-Wire Grid-Tied Inverters | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳景然(Ching-Jan Chen),金藝璘(Katherine A. Kim),唐丞譽(Cheng-Yu Tang) | |
dc.subject.keyword | 數學模型,三相四線式併網換流器,分離電容電壓,類比轉數位訊號誤差, | zh_TW |
dc.subject.keyword | mathematical model,3P4W grid-tied inverters,split-capacitor voltages,ADC signal deviation, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201903756 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。