Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73954
標題: 利用深度卷積神經網路辨識延繩釣漁獲中常見之魚種
Identifying Species of Common Sea Fish Harvested by Longliner Using Deep Convolutional Neural Networks
作者: Yi-Chin Lu
呂易晉
指導教授: 郭彥甫
關鍵字: 中央損失函數,卷積神經網路,深度學習,細粒度分類,魚種辨識,
Center loss,Convolutional neural network,Deep learning,Fine-grained classification,Fish species identification,
出版年 : 2019
學位: 碩士
摘要: 漁獲統計資料是海洋資源管理中必不可少的資訊,而統計資料通常是由海上觀察員或船員手動紀錄的,但這樣人工紀錄的方式非常耗時且極具主觀性,因此存在自動化收集與回報漁獲資料的需求。然而漁船甲板上時常充滿各式的雜物,使得自動化的收集與回報漁獲資料充滿挑戰性。近年來由於卷積神經網路 (convolutional neural networks, CNNs) 越來越受歡迎且廣泛被應用於各種複雜的機器視覺任務。因此本研究利用深度卷積神經網路自動辨識11種延繩釣漁船常捕獲之魚種/類,這些魚種/類包含長鰭鮪魚 (Thunnus alalunga)、大目鮪魚 (T. obesus)、黃鰭鮪魚 (T. albacares)、南方黑鮪 (T. maccoyii)、黑皮旗魚 (Makaira nigricans)、雨傘旗魚 (Istiophorus platypterus)、劍旗魚 (Xiphias gladius)與鬼頭刀 (Coryphaena hippurus)。本研究之自動魚種辨識模型使用四種不同的深度卷積神經網路架構,包含:VGG-16、ResNet-50、DenseNet-201與MobileNetV2,搭配center loss function 進行訓練。研究中卷積神經網路模型之準確率最高可達95.83%,而在圖像顯示卡 (Graphics Processing Unit, GPU) 與中央處理器(Central Processing Unit, CPU)最快之運行速度分別可達1.75與107.82毫秒∕影像。
Fish catch statistics reported by vessels are essential information for the management of marine resource. The statistics were conventionally recorded by observers or fishermen. Manual recording is time consuming and can be subjective; thus, there is a demand for automatic statistics collection and reporting. The decks of fishing vessels are usually full of miscellaneous items, making automatic reporting of the statistics challenging. In recent years, convolutional neural networks (CNNs) have become increasingly popular and been applied to solving complex machine vision tasks. This study proposed to automatically identify 11 species or types of fish harvested by longliners using deep CNNs. The species included albacore (Thunnus alalunga), bigeye tuna (T. obesus), yellowfin tuna (T. albacares), southern bluefin tuna (T. maccoyii), blue marlin (Makaira nigricans), Indo-Pacific sailfish (Istiophorus platypterus), swordfish (Xiphias gladius), and dolphin fish (Coryphaena hippurus). Four deep CNNs modified from architectures VGG-16, ResNet-50, DenseNet-201, and MobileNetV2 were trained to identify the species and types of the fish in images collected on longliners. Center loss function was also applied during training for improving the performance of the CNNs. The CNNs reached an accuracy of as high as 95.83% and required a processing time of as short as 1.75 ms using a GPU and 107.82ms using a CPU.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73954
DOI: 10.6342/NTU201903085
全文授權: 有償授權
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.96 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved