請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73953
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾添東(Tien-Tung Chung) | |
dc.contributor.author | Wei-Li Huang | en |
dc.contributor.author | 黃威立 | zh_TW |
dc.date.accessioned | 2021-06-17T08:14:47Z | - |
dc.date.available | 2020-08-19 | |
dc.date.copyright | 2019-08-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | [1] Ostendorf, A., & Chichkov, B. N. (2006). Two-photon polymerization: a new approach to micromachining. Photonics spectra, 40(10), 72.
[2] Baldeck, P. L., Prabhakaran, P., Liu, C. Y., Bouriau, M., Gredy, L., Stephan, O., ... & Lin, C. L. (2013, September). Recent advances in two-photon 3D laser lithography with self-Q-switched Nd: YAG microchip lasers. In Optical Processes in Organic Materials and Nanostructures II (Vol. 8827, p. 88270E). International Society for Optics and Photonics. [3] Burmeister, F., Steenhusen, S., Houbertz, R., Asche, T. S., Nickel, J., Nolte, S., ... & Fessel, S. (2015). Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications. Optically induced nanostructures: Biomedical and technical applications, 239-266. [4] Liu, Y. J., Yang, J. Y., Nie, Y. M., Lu, C. H., Huang, E. D., Shin, C. S., ... & Lin, C. L. (2015). A simple and direct reading flow meter fabricated by two-photon polymerization for microfluidic channel. Microfluidics and Nanofluidics, 18(3), 427-431. [5] Kawata, S., Sun, H. B., Tanaka, T., & Takada, K. (2001). Finer features for functional microdevices. Nature, 412(6848), 697. [6] Serbin, J., Egbert, A., Ostendorf, A., Chichkov, B. N., Houbertz, R., Domann, G., ... & Popall, M. (2003). Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Optics letters, 28(5), 301-303. [7] Formanek, F., Takeyasu, N., Tanaka, T., Chiyoda, K., Ishikawa, A., & Kawata, S. (2006). Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Optics express, 14(2), 800-809. [8] Ovsianikov, A., Chichkov, B., Mente, P., Monteiro‐Riviere, N. A., Doraiswamy, A., & Narayan, R. J. (2007). Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. International journal of applied ceramic technology, 4(1), 22-29. [9] Paz, V. F., Emons, M., Obata, K., Ovsianikov, A., Peterhänsel, S., Frenner, K., ... & Osten, W. (2012). Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. Journal of Laser Applications, 24(4), 042004. [10] Göppert‐Mayer, M. (1931). Über elementarakte mit zwei quantensprüngen. Annalen der Physik, 401(3), 273-294. [11] Kaiser, W., & Garrett, C. G. B. (1961). Two-photon excitation in Ca F 2: Eu 2+. Physical review letters, 7(6), 229. [12] Lee, K. S., Yang, D. Y., Park, S. H., & Kim, R. H. (2006). Recent developments in the use of two‐photon polymerization in precise 2D and 3D microfabrications. Polymers for advanced technologies, 17(2), 72-82. [13] Maruo, S., & Kawata, S. (1998). Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. Journal of microelectromechanical systems, 7(4), 411-415. [14] Maruo, S., Nakamura, O., & Kawata, S. (1997). Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics letters, 22(2), 132-134. [15] Li, L., & Allen, Y. Y. (2009). Microfabrication on a curved surface using 3D microlens array projection. Journal of Micromechanics and Microengineering, 19(10), 105010. [16] Hong, S. H., Han, K. S., Byeon, K. J., Lee, H., & Choi, K. W. (2008). Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp. Japanese Journal of Applied Physics, 47(5R), 3699. [17] Cannon, A. H., Allen, A. C., Graham, S., & King, W. P. (2006). Molding ceramic microstructures on flat and curved surfaces with and without embedded carbon nanotubes. Journal of Micromechanics and Microengineering, 16(12), 2554. [18] Jackman, R. J., Wilbur, J. L., & Whitesides, G. M. (1995). Fabrication of submicrometer features on curved substrates by microcontact printing. Science, 269(5224), 664-666. [19] Kwon, Y. W., Park, J., Kim, T., Kang, S. H., Kim, H., Shin, J., ... & Hong, S. W. (2016). Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS nano, 10(4), 4609-4617. [20] Marques, C., Desta, Y. M., Rogers, J., Murphy, M. C., & Kelly, K. (1997). Fabrication of high-aspect-ratio microstructures on planar and nonplanar surfaces using a modified LIGA process. Journal of microelectromechanical systems, 6(4), 329-336. [21] Huang, K. M., Tsai, S. C., Lee, Y. K., Yuan, C. K., Chang, Y. C., Chiu, H. L., ... & Liao, Y. C. (2017). Selective metallic coating of 3D-printed microstructures on flexible substrates. RSC Advances, 7(81), 51663-51669. [22] Kurselis, K., Kiyan, R., Bagratashvili, V. N., Popov, V. K., & Chichkov, B. N. (2013). 3D fabrication of all-polymer conductive microstructures by two photon polymerization. Optics express, 21(25), 31029-31035. [23] Staudinger, U., Zyla, G., Krause, B., Janke, A., Fischer, D., Esen, C., ... & Ostendorf, A. (2017). Development of electrically conductive microstructures based on polymer/CNT nanocomposites via two-photon polymerization. Microelectronic Engineering, 179, 48-55. [24] Park, S. H., Lim, T. W., Yang, D. Y., Yi, S. W., & Kong, H. J. (2005). Direct fabrication of micropatterns and three-dimensional structures using nanoreplication-printing (nRP) process. Sensors and Materials, 17(2), 65-75. [25] Nasse, M. J., & Woehl, J. C. (2010). Realistic modeling of the illumination point spread function in confocal scanning optical microscopy. Josa a, 27(2), 295-302. [26] Sun, H. B., & Kawata, S. (2003). Two-photon laser precision microfabrication and its applications to micro-nano devices and systems. Journal of lightwave technology, 21(3), 624. [27] Liao, C. Y. (2008). Product model acquisition, preparation, and simulation for two-photon polymerization micro-manufacturing. Joint PhD thesis, University of Joseph Fourier and National Taiwan University, France and Taiwan. [28] Correa, D. S., De Boni, L., Otuka, A. J., Tribuzi, V., & Mendonça, C. R. (2012). Two-photon polymerization fabrication of doped microstructures (Vol. 30, pp. 333-356). InTech. [29] Hasegawa, T., & Maruo, S. (2007, November). Two-photon microfabrication with a supercritical CO 2 drying process toward replication of three-dimensional microstructures. In 2007 International Symposium on Micro-NanoMechatronics and Human Science (pp. 12-15). IEEE. [30] Maruo, S., Hasegawa, T., & Yoshimura, N. (2009). Single-anchor support and supercritical CO 2 drying enable high-precision microfabrication of three-dimensional structures. Optics express, 17(23), 20945-20951. [31] Liu, Y., Nolte, D. D., & Pyrak-Nolte, L. J. (2010). Large-format fabrication by two-photon polymerization in SU-8. Applied Physics A, 100(1), 181-191. [32] W. J. Li. (2013). Optimization of material and fabrication process for micro fabrication by Two-Photon Polymerization. Master thesis, Department of Mechanical Engineering, College of Engineering, National Taiwan University. [33] Y. K. Lee. (2018). Development and Fabrication of Large Scale Structures by Two-Photon Polymerization Technology. Master thesis, Department of Mechanical Engineering, College of Engineering, National Taiwan University. [34] C. S. Cheong. (2018). Fabrication of Substrates with Different Surface Roughness Region by Two Photon Polymerization Technology. Master thesis, Department of Mechanical Engineering College of Engineering National Taiwan University. [35] Bhattacharya, S., Datta, A., Berg, J. M., & Gangopadhyay, S. (2005). Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of microelectromechanical systems, 14(3), 590-597. [36] Q. W. Tang. (2017). Design and Fabrication of Large Scale 3D objects by Two-Photon Polymerization Technology. Mater thesis, Department of Mechanical Engineering, College of Engineering, National Taiwan University. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73953 | - |
dc.description.abstract | 本文研究雙光子聚合技術應用於大範圍曲面上微結構製造,本研究中所使用的雙光子聚合製造系統整合了飛秒雷射、掃描振鏡、壓電平台、傾斜校正平台、平面移動平台、分光鏡、CMOS相機、10倍放大倍率物鏡與繞射分光元件,利用上述雙光子聚合製造系統,可以成功製作出基於Cassie-Baxter模型設計之不同尺寸與幾何形狀的疏水結構,此外,有賴於高功率雷射、平面移動平台及繞射分光元件的幫助,製作時間能縮短能有更大的製作範圍,目前製作出面積5mm x 5mm之疏水結構,製作時間為42分鐘。完成製作後,也利用10µL之水滴進行疏水測試,以證明此微結構能使玻片表面疏水。另一方面,在加裝了分光鏡、CMOS相機與平面移動平台後,此雙光子聚合製造系統具有定位及觀測功能,有了這樣的功能,我們能在曲面上進行定位,以設定加工之座標系進行製造,而後成功在曲面上製作了微線路,其投影面積為2mm x 2mm,線寬為13µm。 | zh_TW |
dc.description.abstract | This thesis studies on fabricating large scale hydrophobic microstructures and micro wires on curvilinear surfaces by two-photon polymerization (TPP) technology. The TPP fabrication system used in this thesis integrates femtosecond laser, galvanometer scanner, piezo translation stage, tilting correction stage, planar translation stage, beam splitter, CMOS camera, 10x objective lens with numerical aperture 0.25 and diffractive optical elements. Based on the TPP fabrication system, different dimensions and geometric shapes for hydrophobic microstructures designed according to Cassie-Baxter model were successfully fabricated. Furthermore, by using high power laser, micron resolution planar translation stage and diffractive optical elements (5x5 spots), the fabrication time can be greatly reduced with improved fabrication scale. Therefore, the large scale hydrophobic microstructures can be manufactured with 5mm x 5mm cover area and fabrication time 42 minutes. Then, the contact angle test with 10µL water droplet was applied to prove that the microstructures can make the surface of cover glass hydrophobic. On the other hand, with the beam splitter, CMOS camera and planar translation stage, we can make the TPP fabrication system have the ability of observation and positioning. By this feature, we can locate certain point on curvilinear surface to define the coordinate system then fabricate microstructures on it. After that, micro wire on curvilinear surface can be successfully fabricated with 2mm x 2mm projection area and 13µm wire width. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:14:47Z (GMT). No. of bitstreams: 1 ntu-108-R06522635-1.pdf: 7666141 bytes, checksum: 82cde433f569b7d081249c7261f78760 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES X Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature review 5 1.3 Research motivation 10 1.4 Thesis outline 11 Chapter 2 Principle and fabrication process of TPP 12 2.1 Fundamental principle of TPP process 12 2.2 The fabrication process of TPP 16 2.3 NTUMFS CAM system for TPP micro fabrication 18 2.4 Adhesion improvement in TPP fabrication process 19 2.5 Supercritical drying process 20 2.6 Scanning electronic microscope image 23 Chapter 3 Experimental setup and material preparation for TPP micro fabrication 25 3.1 Experimental setup of TPP micro fabrication system based on galvanometer scanner 25 3.2 Material of TPP micro fabrication 30 Chapter 4 Fabrication of large scale hydrophobic microstructures by TPP 32 4.1 Design of hydrophobic microstructures 32 4.2 Fabrication of large scale hydrophobic microstructures by TPP 38 4.3 Contact angle measurement 46 Chapter 5 Fabrication of micro wires on curvilinear surface by TPP 50 5.1 Fabrication of curvilinear surface 50 5.2 Design and projection of micro wires CAD model on curvilinear surface 53 5.3 Fabrication of micro wires on curvilinear surface by TPP 55 Chapter 6 Conclusions and suggestions 65 6.1 Conclusions 65 6.2 Suggestions 66 References 67 Appendix A Software installation for TPP micro fabrication system 72 | |
dc.language.iso | zh-TW | |
dc.title | 大範圍雙光子聚合技術應用於曲面上微結構製造 | zh_TW |
dc.title | Large area fabrication of microstructures on curvilinear surfaces by two-photon polymerization technology | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖運炫(Yunn-Shiuan Liao),王安邦(An-Bang Wang),廖英志(Ying-Chih Liao) | |
dc.subject.keyword | 雙光子聚合,雙光子吸收,飛秒雷射,掃描振鏡,疏水結構,微結構,曲面, | zh_TW |
dc.subject.keyword | two-photon polymerization,two-photon absorption,femtosecond laser,galvanometer scanner,hydrophobic structure,microstructure,curvilinear surface, | en |
dc.relation.page | 73 | |
dc.identifier.doi | 10.6342/NTU201902160 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 7.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。