Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73931
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林菀俞
dc.contributor.authorYu-Shun Linen
dc.contributor.author林育昇zh_TW
dc.date.accessioned2021-06-17T08:14:06Z-
dc.date.available2022-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citationAhmad, S., Rukh, G., Varga, T. V., Ali, A., Kurbasic, A., Shungin, D., . . . Franks, P. W. (2013). Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry. PLOS Genetics, 9(7), e1003607. doi:10.1371/journal.pgen.1003607
Albuquerque, D., Nóbrega, C., & Manco, L. (2013). Association of FTO Polymorphisms with Obesity and Obesity-Related Outcomes in Portuguese Children. PLoS ONE, 8(1), e54370. doi:10.1371/journal.pone.0054370
Andreasen, C. H., Stender-Petersen, K. L., Mogensen, M. S., Torekov, S. S., Wegner, L., Andersen, G., . . . Hansen, T. (2008). Low Physical Activity Accentuates the Effect of the <em>FTO</em> rs9939609 Polymorphism on Body Fat Accumulation. Diabetes, 57(1), 95-101. doi:10.2337/db07-0910
Aschard, H. (2016). A perspective on interaction effects in genetic association studies. Genetic epidemiology, 40(8), 678-688. doi:10.1002/gepi.21989
Cadoret, R. J., Cain, C. A., & Crowe, R. R. (1983). Evidence for gene-environment interaction in the development of adolescent antisocial behavior. Behavior Genetics, 13(3), 301-310. doi:10.1007/bf01071875
Cha, S. W., Choi, S. M., Kim, K. S., Park, B. L., Kim, J. R., Kim, J. Y., & Shin, H. D. (2012). Replication of Genetic Effects of FTO Polymorphisms on BMI in a Korean Population. Obesity, 16(9), 2187-2189. doi:10.1038/oby.2008.314
Chen, H., Meigs, J. B., & Dupuis, J. (2014). Incorporating gene-environment interaction in testing for association with rare genetic variants. Human heredity, 78(2), 81-90. doi:10.1159/000363347
Chuenta, W., Phonrat, B., Tungtrongchitr, A., Limwongse, C., Chongviriyaphan, N., Santiprabhob, J., & Tungtrongchitr, R. (2015). Common variations in the FTO gene and obesity in Thais: A family-based study. Gene, 558(1), 75-81. doi:https://doi.org/10.1016/j.gene.2014.12.050
Cronin, R. M., Field, J. R., Bradford, Y., Shaffer, C. M., Carroll, R. J., Mosley, J. D., . . . Denny, J. C. (2014). Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index. Frontiers in Genetics, 5(250). doi:10.3389/fgene.2014.00250
Dai, J. Y., Kooperberg, C., Leblanc, M., & Prentice, R. L. (2012). Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction. Biometrika, 99(4), 929-944. doi:10.1093/biomet/ass044
Dina, C., Meyre, D., Gallina, S., Durand, E., Körner, A., Jacobson, P., . . . Froguel, P. (2007). Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genetics, 39, 724. doi:10.1038/ng2048
https://www.nature.com/articles/ng2048#supplementary-information
Franks, P. W., Pearson, E., & Florez, J. C. (2013). Gene-Environment and Gene-Treatment Interactions in Type 2 Diabetes. Progress, pitfalls, and prospects, 36(5), 1413-1421. doi:10.2337/dc12-2211
Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., . . . McCarthy, M. I. (2007). A Common Variant in the <em>FTO</em> Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science, 316(5826), 889-894. doi:10.1126/science.1141634
Friedman, J., Hastie, T., & Tibshirani, R. (2009). glmnet: Lasso and elastic-net regularized generalized linear models. R package version, 1(4).
Frost, H. R., Shen, L., Saykin, A. J., Williams, S. M., Moore, J. H., & Alzheimer's Disease Neuroimaging, I. (2016). Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control. Genetic epidemiology, 40(7), 544-557. doi:10.1002/gepi.21997
Gauderman, W. J., Zhang, P., Morrison, J. L., & Lewinger, J. P. (2013). Finding Novel Genes by Testing G × E Interactions in a Genome-Wide Association Study. Genetic epidemiology, 37(6), 603-613. doi:10.1002/gepi.21748
Hüls, A., Ickstadt, K., Schikowski, T., & Krämer, U. (2017). Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression. BMC Genetics, 18(1), 55. doi:10.1186/s12863-017-0519-1
Hinney, A., Nguyen, T. T., Scherag, A., Friedel, S., Brönner, G., Müller, T. D., . . . Hebebrand, J. (2007). Genome Wide Association (GWA) Study for Early Onset Extreme Obesity Supports the Role of Fat Mass and Obesity Associated Gene (FTO) Variants. PLoS ONE, 2(12), e1361. doi:10.1371/journal.pone.0001361
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.
Hubacek, J. A., Bohuslavova, R., Kuthanova, L., Kubinova, R., Peasey, A., Pikhart, H., . . . Bobak, M. (2008). The FTO Gene and Obesity in a Large Eastern European Population Sample: The HAPIEE Study. Obesity, 16(12), 2764-2766. doi:10.1038/oby.2008.421
Hunt, S. C., Stone, S., Xin, Y., Scherer, C. A., Magness, C. L., Iadonato, S. P., . . . Adams, T. D. (2012). Association of the FTO Gene With BMI. Obesity, 16(4), 902-904. doi:10.1038/oby.2007.126
Hunter, D. J. (2005). Gene–environment interactions in human diseases. Nature Reviews Genetics, 6(4), 287-298. doi:10.1038/nrg1578
Jiao, S., Hsu, L., Bézieau, S., Brenner, H., Chan, A. T., Chang-Claude, J., . . . Peters, U. (2013). SBERIA: set-based gene-environment interaction test for rare and common variants in complex diseases. Genetic epidemiology, 37(5), 452-464. doi:10.1002/gepi.21735
Lin, W.-Y., Chan, C. C., Liu, Y. L., Yang, A. C., Tsai, S. J., & Kuo, P. H. (2019). Performing different kinds of physical exercise differentially attenuates the genetic effects on obesity measures: evidence from 18,424 Taiwan Biobank participants. PLOS Genetics, in press.
Lin, W.-Y., Huang, C.-C., Liu, Y.-L., Tsai, S.-J., & Kuo, P.-H. (2018). Polygenic approaches to detect gene–environment interactions when external information is unavailable. Briefings in Bioinformatics. doi:10.1093/bib/bby086
Lin, W.-Y., Huang, C.-C., Liu, Y.-L., Tsai, S.-J., & Kuo, P.-H. (2019). Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests. Frontiers in genetics, 9(715). doi:10.3389/fgene.2018.00715
Lin, X., Lee, S., Christiani, D. C., & Lin, X. (2013). Test for interactions between a genetic marker set and environment in generalized linear models. Biostatistics (Oxford, England), 14(4), 667-681. doi:10.1093/biostatistics/kxt006
Lin, X., Lee, S., Wu, M. C., Wang, C., Chen, H., Li, Z., & Lin, X. (2016). Test for rare variants by environment interactions in sequencing association studies. Biometrics, 72(1), 156-164. doi:10.1111/biom.12368
Liu, J., Huang, J., Zhang, Y., Lan, Q., Rothman, N., Zheng, T., & Ma, S. (2013). Identification of gene–environment interactions in cancer studies using penalization. Genomics, 102(4), 189-194. doi:https://doi.org/10.1016/j.ygeno.2013.08.006
Liu, J. Z., Mcrae, A. F., Nyholt, D. R., Medland, S. E., Wray, N. R., Brown, K. M., . . . Investigators, A. (2010). A Versatile Gene-Based Test for Genome-wide Association Studies. Am J Hum Genet, 87(1), 139-145. doi:10.1016/j.ajhg.2010.06.009
Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., . . . Speliotes, E. K. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518, 197. doi:10.1038/nature14177
https://www.nature.com/articles/nature14177#supplementary-information
Maes, H. H., Neale, M. C., & Eaves, L. J. (1997). Genetic and environmental factors in relative body weight and human adiposity. Behavior Genetics, 27(4), 325-351.
McAllister, K., Mechanic, L. E., Amos, C., Aschard, H., Blair, I. A., Chatterjee, N., . . . Witte, J. S. (2017). Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. American journal of epidemiology, 186(7), 753-761. doi:10.1093/aje/kwx227
Ottman, R. (1996). Gene–Environment Interaction: Definitions and Study Design. Preventive Medicine, 25(6), 764-770. doi:https://doi.org/10.1006/pmed.1996.0117
Price, R. A., Li, W.-D., & Zhao, H. (2008). FTO gene SNPs associated with extreme obesity in cases, controls and extremely discordant sister pairs. BMC Medical Genetics, 9(1), 4. doi:10.1186/1471-2350-9-4
Qi, L., & Cho, Y. A. (2008). Gene-environment interaction and obesity. Nutrition Reviews, 66(12), 684-694. doi:10.1111/j.1753-4887.2008.00128.x
Rothman, N., Garcia-Closas, M., Chatterjee, N., Malats, N., Wu, X., Figueroa, J. D., . . . Chanock, S. J. (2010). A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nature Genetics, 42, 978. doi:10.1038/ng.687
https://www.nature.com/articles/ng.687#supplementary-information
Scuteri, A., Sanna, S., Chen, W. M., Uda, M., Albai, G., Strait, J., . . . Abecasis, G. R. (2007). Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet, 3(7), e115. doi:10.1371/journal.pgen.0030115
Tan, L.-J., Zhu, H., He, H., Wu, K.-H., Li, J., Chen, X.-D., . . . Deng, H.-W. (2014). Replication of 6 Obesity Genes in a Meta-Analysis of Genome-Wide Association Studies from Diverse Ancestries. PLoS ONE, 9(5), e96149. doi:10.1371/journal.pone.0096149
Thomas, D. (2010). Gene–environment-wide association studies: emerging approaches. Nature Reviews Genetics, 11, 259. doi:10.1038/nrg2764
https://www.nature.com/articles/nrg2764#supplementary-information
Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267-288. Retrieved from http://www.jstor.org/stable/2346178
Wakefield, J. (2007). A Bayesian Measure of the Probability of False Discovery in Genetic Epidemiology Studies. The American Journal of Human Genetics, 81(2), 208-227. doi:https://doi.org/10.1086/519024
Wakefield, J. (2009). Bayes factors for genome-wide association studies: comparison with P-values. Genetic epidemiology, 33(1), 79-86. doi:10.1002/gepi.20359
Wang, K., Li, W.-D., Zhang, C. K., Wang, Z., Glessner, J. T., Grant, S. F. A., . . . Price, R. A. (2011). A Genome-Wide Association Study on Obesity and Obesity-Related Traits. PLoS ONE, 6(4), e18939. doi:10.1371/journal.pone.0018939
Winham, S. J., & Biernacka, J. M. (2013). Gene–environment interactions in genome-wide association studies: current approaches and new directions. Journal of Child Psychology and Psychiatry, 54(10), 1120-1134. doi:10.1111/jcpp.12114
Wu, C., Jiang, Y., Ren, J., Cui, Y., & Ma, S. (2018). Dissecting gene-environment interactions: A penalized robust approach accounting for hierarchical structures. Statistics in Medicine, 37(3), 437-456. doi:10.1002/sim.7518
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. American journal of human genetics, 88(1), 76-82. doi:10.1016/j.ajhg.2010.11.011
Yang, J., Loos, R. J. F., Powell, J. E., Medland, S. E., Speliotes, E. K., Chasman, D. I., . . . Visscher, P. M. (2012). FTO genotype is associated with phenotypic variability of body mass index. Nature, 490, 267. doi:10.1038/nature11401
https://www.nature.com/articles/nature11401#supplementary-information
Zou, H., & Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 67(2), 301-320. Retrieved from http://www.jstor.org/stable/3647580
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73931-
dc.description.abstract基因-環境交互作用(G×E)已被發現影響許多複雜疾病。然而,由於多重檢定校正的嚴苛懲罰,迄今,許多G×E之效果仍無法被檢測出來。本研究探討二階段分析策略的候選基因與環境交互作用檢定方法。首先,以「脊迴歸」(RIDGE),「彈性網」(ENET)或「最小絕對值收斂與選擇算子」(LASSO)篩選具邊際效應的單核苷酸多型性(SNP),來建構出「基因風險分數」(GRS)。而後檢測GRS與E之間的交互作用。吾人以模擬來評估上述方法和常見的五種G×E檢測方法之統計檢定力。
在實際數據分析中,吾人將本法應用於臺灣人體生物資料庫中18,424位個案。針對每個SNP與身體質量指數(BMI)進行迴歸,調整性別、年齡(以年計)、教育程度、飲酒狀況、抽菸狀況、規律運動狀況及前10個代表祖源的主成分。最後檢測出達到全基因組顯著水準(即p值<5×〖10〗^(-8))的15個SNPs皆位於「脂肪質量與肥胖關聯基因」(FTO)中。
本文進一步探討FTO基因與三種環境因子間的交互作用,包括規律運動、抽菸與飲酒。檢測出FTO基因與規律運動存在交互作用(p值= 0.0039)。在不運動族群,GRS的增加對應到更高量的BMI上升。本研究的結果證明,規律運動可降低FTO基因對肥胖的不利影響。
zh_TW
dc.description.abstractGene-environment (GxE) interactions have been found to play a role in many complex diseases. However, due to the harsh penalty of multiple-testing correction, the detection of GxE is underpowered and many GxE interactions have remained hidden to date. The aim of this study is to explore powerful candidate-gene-based GxE interaction tests by using a two-stage analysis strategy. First, we constructed a genetic risk scores (GRS) by filtering the marginal effects of single-nucleotide polymorphisms (SNPs) with the ridge regression (RIDGE), elastic net (ENET), or the least absolute shrinkage and selection operator (LASSO). Second, we tested the interaction between the GRS and E. Moreover, statistical power of our methods and five existing gene-based GxE methods was evaluated with simulations.
In real data analysis, we applied our methods to 18,424 unrelated subjects in the Taiwan Biobank. Body mass index (BMI) was regressed on each SNP, while adjusting for sex, age (in years), educational attainment, drinking status, smoking status, regular exercise, and the first 10 ancestry principal components. A total of 15 SNPs located in the fat mass and obesity associated gene (FTO) reached the genome-wide significance level (i.e., p-value<5×〖10〗^(-8)).

We further explored interactions between the variants in the FTO gene and three environmental factors, including performing regular exercise, cigarette smoking, and alcohol consumption. We found strong evidence that the FTO gene interacts with regular exercise (p = 0.0039). GRSs elevate more BMI in non-exercisers than in exercisers. Our results indicate that performing regular exercise can attenuate the adverse influence of the FTO variants on obesity.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:14:06Z (GMT). No. of bitstreams: 1
ntu-108-R06849029-1.pdf: 3532257 bytes, checksum: 63e17e512a8aa0fc2edd4aa11cbe6709 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
表目錄 viii
圖目錄 ix
第一章 前言 1
第二章 文獻回顧 4
2.1 單標識基因分析法 4
2.2 十閾值邊際基因風險分數法 5
2.3 貝氏因子適性結合法 6
2.4 集合基礎基因環境交互作用法 7
2.5 交互作用序列核關聯法 8
第三章 材料與方法 10
第四章: 模擬與結果 13
4.1 型一錯誤率 15
4.2 統計檢定力 16
4.3 方向正確率 17
4.4 真陽性率 17
4.5 陽性預測率 18
第五章 臺灣人體生物資料庫分析 19
第六章 結論與討論 22
參考文獻 45
dc.language.isozh-TW
dc.subject彈性網zh_TW
dc.subject最小絕對值收斂與選擇算子zh_TW
dc.subject脊迴歸zh_TW
dc.subjectFTO基因zh_TW
dc.subject身體質量指數zh_TW
dc.subject基因-環境交互作用zh_TW
dc.subject臺灣人體生物資料庫zh_TW
dc.subjectFTO geneen
dc.subjectridge regressionen
dc.subjectelastic neten
dc.subjectleast absolute shrinkage and selection operatoren
dc.subjectTaiwan Biobanken
dc.subjectbody mass indexen
dc.subjectgene-environment interactionen
dc.title以懲罰迴歸法來檢定基因環境交互作用zh_TW
dc.titlePenalized regressions for testing gene-environment interactionsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文宗,郭柏秀,楊欣洲,盧子彬
dc.subject.keyword基因-環境交互作用,脊迴歸,彈性網,最小絕對值收斂與選擇算子,臺灣人體生物資料庫,身體質量指數,FTO基因,zh_TW
dc.subject.keywordgene-environment interaction,ridge regression,elastic net,least absolute shrinkage and selection operator,Taiwan Biobank,body mass index,FTO gene,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201903703
dc.rights.note有償授權
dc.date.accepted2019-08-15
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved