Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73922
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣
dc.contributor.authorLi-Cheng Changen
dc.contributor.author張立成zh_TW
dc.date.accessioned2021-06-17T08:13:50Z-
dc.date.available2024-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citation[1] D. Kahng and M. M. Atalla, “Silicon-silicon Dioxide Surface Device,“ in IRE Device Research Conference, Pittsburgh, 1960.
[2] A. G. Baca and C. I. H. Ashby, Fabrication of GaAs Devices, Institution of Engineering and Technology, 2005
[3] T. Mimura, S. Hiyamizu, T. Fujii, and K, Nanbu, “A new field-effect transistor with selectively doped GaAs/n-AlGaAs heterojunctions,” Jpn. J. Appl. Phys., vol. 19, no. 5, pp. L225-L227, May 1980.
[4] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, 'High electron mobility transistor based on a GaN-AlIGai-,N heterojunction,' Appl. Phys. Lett., vol. 63, no. 9, p. 1214, Aug. 1993.
[5] U. K. Mishra, L. Shen, T. E. Kazior and Y. Wu, 'GaN-Based RF Power Devices and Amplifiers,' in Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, Feb. 2008.
[6] S. J. Duffy, B. Benbakhti, M. Mattalah, W. Zhang, M. Bouchilaoun, M. Boucherta, K. Kalna, N. Bourzgui, H. Maher, and A. Soltani, “Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate,” ECS Journal of Solid State Science and Technology vol. 6, pp. S3040-S3043, 2017.
[7] F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland and P.-A. Rolland, “Effects of AlGaN Back Barrier on AlN/GaN-on-Silicon High-Electron-Mobility Transistors,” Appl. Phys. Express, vol. 4, pp. 124101, 2011.
[8] D. S. Lee, X. Gao, S. Guo, and T. Palacios, “InAlN/GaN HEMTs With AlGaN Back Barriers,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 617–619, Sep. 2011.
[9] R Wang, G. Li, G. Karbasian, J. Guo, F. Faria, Z. Hu, Y. Yue, J. Verma, O. Laboutin, and Y. Cao, “InGaN Channel High-Electron-Mobility Transistors with InAlGaN Barrier and fT/fmax of 260/220 GHz,” Appl. Phys. Express, vol. 6, pp. 016503, 2013.
[10] I. P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, 'AlN/GaN and (AI,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy,' J. Appl. Phys., vol. 90, no. 10, pp. 5196-5201, 2001.
[11] M. A. Khan, J. M. Van Hove, J. N. Kuznia, and D. T. Olsen, “High electron mobility GaN/AlxGa1-xN heterostructures grown by low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 58, no. 21, pp. 2408-2410, May 1991.
[12] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. 10024-10027, Oct. 1997.
[13] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, 'Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,' J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[14] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, 'Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,' Appl. Phys. Lett., vol. 77, no. 2, pp. 250-252, Jul. 2000.
[15] R. Oberhuber, 'Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped fieldeffect transistors,' Appl. Phys. Lett., vol. 73, no. 6, p. 818, 1998.
[16] A. R. Clawson, “Guide to references on III-V semiconductor chemical etching,” Materials Science and Engineering, vol. 31, pp. 1438, 2001.
[17] Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, 'Very low resistance multilayer Ohmic contact to n-GaN,' Appl. Phys. Lett., vol. 68, no. 12, pp. 1672-1674, 1996.
[18] V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida, 'Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n -GaN,' J Appl. Phys., vol. 92, no. 3, pp. 1712-1714, 2002.
[19] D.-F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones, and L. Salamanca-Riba, 'Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,' J Appl. Phys., vol. 89, no. 11, pp. 6214-6217, 2001.
[20] F. M. Mohammed, L. Wang, I. Adesida, and E. Piner, 'The role of barrier layer on Ohmic performance of Ti/Al-based contact metallizations on AlGaN/GaN heterostructures,' J. Appl. Phys., vol. 100, no. 2, p. 023708, Jul. 2006.
[21] J. K. Kim, H. W. Jang, and J.-L. Lee, 'Mechanism for Ohmic contact formation of Ti on n-type GaN investigated using synchrotron radiation photoemission spectroscopy,' J Appl. Phys., vol. 91, no. 11, p. 9214, Jun. 2002.
[22] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, 'The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,' IEEE Electron Device Lett., vol. 21, no. 6, pp. 268-270, 2000.
[23] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, 'AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,' IEEE Electron Device Lett., vol. 21, no. 2, pp. 63-65, 2000.
[24] O. I. Saadat, J. W. Chung, E. L. Piner, and T. Palacios, 'Gate-First AlGaN/GaN HEMT Technology for High-Frequency Applications,' IEEE Electron Device Lett., vol. 30, no. 12, pp. 1254 -1256, Dec. 2009.
[25] K. J. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High Performance InP-Based Enhancement-Mode HEMT's Using Non-Alloyed Ohmic Contacts and Pt-Based Buried-Gate Technologies,” IEEE Trans. Electron Devices, vol. 43, no. 2, Feb. 1996.
[26] Y. Cai, Y. G. Zhou, K. J. Chen, and K. M. Lau, “High-performance enhancement-mode AlGaN/GaN HEMT using fluoride-based plasma treatment,” IEEE Electron Device Lett., vol. 26, no. 7, pp. 435-437, Jul. 2005
[27] Y. Cai, Y. G. Zhou, K. M. Lau and K. J. Chen, “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2207-2215, Sep. 2006.
[28] Y. Cai, Z. Q. Cheng, W. C. W. Tang, K. J. Chen, and K. M. Lau, “Monolithic integration of enhancement- and depletion-mode AlGaN/GaN HEMTs for GaN digital integrated circuits,” in Dig. IEDM Tech., pp. 771-774, Dec. 2005.
[29] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, and H. Ishida, “A normally-off AlGaN/GaN transistor with RonA = 2.6 mΩcm2 and BVds = 640 V using conductivity modulation,” in Dig. IEDM Tech., pp. 1-4, Dec. 2006.
[30] T. Fujiwara, S. Rajan, S. Keller, M. Higashiwaki, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Enhancement-Mode m-plane AlGaN/GaN Heterojunction Field-Effect Transistors,” Appl. Phys. Express, vol. 2, pp. 011001, 2009.
[31] T. Fujiwara, S. Keller, M. Higashiwaki, J. S. Speck, S. P. DenBaars, and U. K. Mishra1, “Si Delta-Doped m-Plane AlGaN/GaN Heterojunction Field-Effect Transistors,” Appl. Phys. Express, vol. 2 ,pp. 061003, 2009.
[32] L-C Chang, C-J Dai, and C.-H. Wu, “Threshold Voltage Modulation of Enhancement-Mode InGaAs Schottky-Gate Fin-HEMTs,” IEEE Electron Device Lett., vol. 40, no. 4, pp. 534–537, Apr. 2019. doi: 10.1109/LED.2019.2902349.
[33] T. Tamura, J. Kotani, S. Kasai, and T. Hashizume, ”Nearly Temperature-Independent Saturation Drain Current in a Multi-Mesa-Channel AlGaN/GaN High-Electron-Mobility Transistor,” Appl. Phys. Exp., vol. 1, no. 2, pp. 023001-1–023001-3, Feb. 2008, doi: 10.1143/APEX.1.023001
[34] K. Ohi and T. Hashizume, ” Drain Current Stability and Controllability of Threshold Voltage and Subthreshold Current in a Multi-Mesa-Channel AlGaN/GaN High Electron Mobility Transistor,” Jpn. J. Appl. Phys., vol. 48, no. 8R, pp. 081002-1–081002-5, Aug. 2009, doi: 10.1143/JJAP.48.081002
[35] S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, K. J. Chen, and B. Zhang, 'Enhancement-Mode Operation of Nanochannel Array (NCA) AlGaN/GaN HEMTs,' IEEE Electron Device Lett., vol. 33, no. 3, pp. 354–356, Mar. 2012, doi: 10.1109/LED.2011.2179003
[36] C.-L. Lin, P.-H. Hsiao, W.-K. Yeh, H.-W. Liu, S.-R. Yang, Y.-T. Chen, K.-M. Chen, and W.-S. Liao, “Effects of Fin Width on Device Performance and Reliability of Double-Gate n-Type FinFETs,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 3639–3644, Jan. 2013, doi: 10.1109/TED.2013.2281296.
[37] A. V. Thathachary, G. Lavallee, M. Cantoro, K. K. Bhuwalka, Y.-C. Heo, “Impact of Sidewall Passivation and Channel Composition on InxGa1−xAs FinFET Performance,” IEEE Electron Device Lett., vol. 36, no. 2, pp. 117–119, Feb, 2015, doi: 10.1109/LED.2014.2384280.
[38] A. Vardi and J. A. del Alamo, “Sub-10-nm Fin-Width Self-Aligned InGaAs FinFETs,” IEEE Electron Device Lett., vol. 37, no. 9, pp. 1104–1107, Sep. 2016, doi: 10.1109/LED.2016.2596764.
[39] S.-J. Chang, H. Zhou, N. Gong, D.-M. Kang, J.-W. Lim, M. Si, P. D. Ye, and T. P. Ma, “Fin-Width Effects on Characteristics of InGaAs-Based Independent Double-Gate FinFETs,” IEEE Trans. Electron Devices, vol. 38, no. 4, pp. 441–444, Apr. 2017, doi: 10.1109/LED.2017.2671859.
[40] C.-L. Lin, P.-H. Hsiao, W.-K. Yeh, H.-W. Liu, S.-R. Yang, Y.-T. Chen, K.-M. Chen, and W.-S. Liao, “Effects of Fin Width on Device Performance and Reliability of Double-Gate n-Type FinFETs,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 3639–3644, Jan. 2013, doi: 10.1109/TED.2013.2281296.
[41] A. V. Thathachary, L. Liu, and S. Datta, “Impact of fin width scaling on carrier transport in III-V FinFETs,” in Proc. 71st Annu. DRC, Jun. 2013, p. 17–18, doi: 10.1109/DRC.2013.6633773.
[42] L.-C. Chang, J.-. Lin, .C.-J. Dai, M. Yang, Y.-H. Jiang, Y.-R. Wu, and C.-H. Wu, “Systematic Investigation of the Threshold Voltage Modulation of AlGaN/GaN Schottky-Gate Fin-HEMTs,” J. Appl. Phys., vol. 125, no. 9, pp. 094502-1–094502-7, Mar. 2019. doi: 10.1063/1.5085275.
[43] D. Hisamoto, W.‐C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, T.‐J. King, J. Bokor, and C. Hu, “A folded‐channel MOSFET for deep‐sub‐tenth micron era,” in Dig. IEDM Tech., pp. 1032–1034, 1998.
[44] Y. Q. Wu, R. S. Wang, T. Shen, J. J. Gu and P. D. Ye, “First Experimental Demonstration of 100 nm Inversion-mode InGaAs FinFET through Damage-free Sidewall Etching,” in Dig. IEDM Tech., pp. 311–314, 2009.
[45] K.-S. Im, R.-H. Kim, K.-W. Kim, D.-S. Kim, C. S. Lee, S. Cristoloveanu, and J.-H. Lee, “Normally Off Single-Nanoribbon Al2O3/GaN MISFET,” IEEE Electron Device Lett., vol. 34, no. 1, pp. 27–29, Jan. 2013, doi: 10.1109/LED.2012.2222861.
[46] C. Yadav, P. Kushwaha, S. Khandelwal, J. P. Duarte, Y. S. Chauhan, and C. Hu, “Modeling of GaN-Based Normally-Off FinFET,” IEEE Electron Device Lett., vol. 35, no. 6, pp. 612–614, Jun. 2014, doi: 10.1109/LED.2014.2314700.
[47] K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current Stability in Multi-Mesa-Channel AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 2997–3004, Oct. 2013, doi: 10.1109/TED.2013.2266663.
[48] K.-S. Im, Y.-W. Jo, J.-H. Lee, S. Cristoloveanu, and J.-H. Lee, “Heterojunction-Free GaN Nanochannel FinFETs With High Performance,” IEEE Electron Device Lett. vol. 34, no. 3, pp. 381–383, Mar. 2013, doi: 10.1109/LED.2013.2240372.
[49] S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta and N. DasGupta, 'Gate Leakage Mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and Modeling,' in IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3157–3165, Oct. 2013, doi: 10.1109/TED.2013.2272700.
[50] Y.-S. Lin, Y.-W. Lain, and S. S. H. Hsu, “AlGaN/GaN HEMTs With Low Leakage Current and High On/Off Current Ratio,” IEEE Electron Device Lett. vol. 31, no. 2, pp. 102–104, Feb. 2010, doi: 10.1109/LED.2009.2036576.
[51] P. Liu, C. Xie, Feng Z., J. Chen, and D. Chen, “Elimination of Gate Leakage in GaN FETs by Placing Oxide Spacers on the Mesa Sidewalls,” IEEE Electron Device Lett. vol. 34, no. 10, pp. 1232–1234, Oct. 2013, doi: 0.1109/LED.2013.2278013.
[52] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin and H. X. Jiang, “Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction,” J. Appl. Phys. vol. pp. 87, 801–804, 2000, 10.1063/1.371944.
[53] A. F. M. Anwar, E. W. Faraclas, “Schottky barrier height in GaN/AlGaN heterostructures,” Solid-State electron. vol. 50, pp. 1041–1045, 2006, 10.1016/j.sse.2006.04.011.
[54] J. T. Asubar, Z. Yatabe, and T. Hashizume, “Reduced thermal resistance in AlGaN/GaN multi-mesa-channel high electron mobility transistors,” Appl. Phys. Lett. vol. 105, pp. 053510, 2014, doi: 10.1063/1.4892538.
[55] L.-C. Chang, M. Yang, Y.-H. Jiang, and C.-H. Wu, “Investigation of GaN Fin-HEMTs with micron-scale fin width,” Proc. of SPIE Vol., vol. 101041, pp. 101041F-1, 2017, doi: 10.1117/12.2257211.
[56] K.-S. Im, D.-H. Son, H.-K. Ahn, S.-B. Bae, J.-K. Mun, E.-S. Nam, S. Cristoloveanu, J.-H. Lee, “Performance improvement of normally off AlGaN/GaN FinFETs with fully gate-covered nanochannel,” Solid- State Electron. vol. 89, pp. 124–127, 2013, 10.1016/j.sse.2013.08.001.
[57] C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes,” J. Appl. Phys. vol. 113, pp. 183104, 2013, doi: 10.1063/1.4804415.
[58] T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior” J. Appl. Phys. vol. 116, pp. 113104, 2014, 10.1063/1.4896103.
[59] C. Gaquiere, S. Trassaert, B. Boudart, and Y. Crosnier, “High-Power GaN MESFET on Sapphire Substrate,” IEEE Microw. Guided Wave Lett. vol. 10, pp.19–20, 2000, doi: 1051-8207(00)02287-X.
[60] S. Bose, Adarsh, A. Kumar, Simrata, M. Gupta, and R. S. Gupta, “A complete analytical model of GaN MESFET for micorwave frequency applications,” Microelectron. J. vol. 32, pp. 983–990, 2001.
[61] L.-C. Chang, S.-Y. Yin, and C.-H. Wu, “Effect of Border Trap on the Threshold Voltage Instability of Fluoride-doped AlGaN/GaN MIS-HEMT,” J. Phys. D: Appl. Phys., vol. 52, no. 19, pp. 195102-1–195012-8, 2019. doi: 10.1088/1361-6463/ab053d.
[62] K. J. Chen, L. Yuan, M. J. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B. K. Li, and J. N. Wang, “Physics of fluorine plasma ion implantation for GaN normally-off HEMT technology,” in IEEE Int. Electron Devices Meeting, Dec. 2011, pp. 465–468.
[63] P. Lagger, C. Ostermaier , G. Pobegen, and D. Pogany, “Towards Understanding the Origin of Threshold Voltage Instability of AlGaN/GaN MIS-HEMTs,” in IEEE Int. Electron Devices Meeting, Dec. 2012, pp. 299–302.
[64] K. Zhang, M. Wu, X. Lei, W. Chen, X. Zheng, X. Ma and Y. Hao, “Observation of threshold voltage instabilities in AlGaN/GaN MIS HEMTs,” Semicond. Sci. Technol., vol. 29, no. 7, pp. 075019-1 –075019-6, 2014.
[65] X. Sun, Y. Zhang, K. S. Chang-Liao, T. Palacios, and T. P. Ma, “Impacts of Fluorine-treatment on E-mode AlGaN/GaN MOS-HEMTs,” in IEEE Int. Electron Devices Meeting, Dec. 2014, pp. 438–441.
[66] A. Basu and I. Adesida, “Accumulation of fluorine in CF4 plasma-treated AlGaN/GaN heterostructure interface: An experimental investigation,” J. of Appl. Phys., vol. 105, no. 3, pp. 033705-1–033705-5, 2009.
[67] C. G. Van de Walle, F. R. McFeely, and S. T. Pantelides, “Fluorine-Silicon Reactions and the Etching of Crystalline Silicon,” Phys. Rev. Lett., vol., vol. 6, no. 16, pp. 1867–1870, 1988.
[68] L. Yuan, M. Wang, and K. J. Chen, “Atomistic Modeling of Fluorine Implantation and Diffusion in III-Nitride Semiconductors,” in IEEE Int. Electron Devices Meeting, Dec. 2011. pp. 543–546.
[69] X. Lu, K. Yu, H. Jiang, A. Zhang, and K. M. Lau, “Study of Interface Traps in AlGaN/GaN MISHEMTs Using LPCVD SiNx as Gate Dielectric,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 824–831, 2017.
[70] P. Lagger, P. Steinschifter, M. Reiner, M. Stadtmüller, G. Denifl, A. Naumann, J. Müller, L. Wilde, J. Sundqvist, D. Pogany, and C. Ostermaier, 'Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal-insulator-semiconductor structures under forward gate bias stress,' Appl. Phys. Lett., vol. 105, no. 3, pp. 033512-1–033512-5, 2014.
[71] D. Bisi, S. H. Chan, X. Liu, R. Yeluri, S. Keller, M. Meneghini, G. Meneghesso, E. Zanoni, and U. K. Mishra, 'On trapping mechanisms at oxide-traps in Al2O3/GaN metal-oxide-semiconductor capacitors,' Appl. Phys. Lett., vol. 108, no. 11, pp. 112104-1–112104-5, 2016.
[72] J. Zhu, B. Hou, L. Chen, Q. Zhu, L. Yang, X. Zhou, P. Zhang, X. Ma, and Y. Hao, “Threshold Voltage Shift and Interface/Border Trapping Mechanism in Al2O3/AlGaN/GaN MOS-HEMTs,” in IEEE Int. Reliability Physics Symp., Mar. 2018, P-WB.1-1–P-WB.1-4.
[73] Y. Zhang, M. Sun, S. J. Joglekar, T. Fujishima, and T. Palacios, “Threshold voltage control by gate oxide thickness in fluorinated GaN metal-oxide-semiconductor high-electron-mobility transistors,” Appl. Phys. Lett., vol. 103, no. 3, pp. 033524-1–033524-5, 2013.
[74] J. M. Tirado, J. L. Sánchez-Rojas, and J. Ignacio Izpura, “Trapping Effects in the Transient Response of AlGaN/GaN HEMT Devices,” IEEE Trans. Electron Devices, vol. 54, no. 3, pp. 410–417, 2007.
[75] G. Longobardi, F. Udrea, S. Sque, G. A. M. Hurkx, J. Croon, E. Napoli, and J. Sonský, “Impact of Donor Traps on the 2DEG and Electrical Behavior of AlGaN/GaN MISFETs,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 27–29, 2014.
[76] B. J. O’Sullivan, R. Mitsuhashi, G. Pourtois, M. Aoulaiche, M. Houssa, N. Van der Heyden, T. Schram, Y. Harada, G. Groeseneken, P. Absil, S. Biesemans, T. Nakabayashi, A. Ikeda, and M. Niwa, ”Reliability study of La2O3 capped HfSiON high-permittivity n-type metal-oxide-semiconductor field-effect transistor devices with tantalum-rich electrodes,” J. Appl. Phys., vol. 104, no. 4, pp. 044512-1–044512-7, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73922-
dc.description.abstract本篇論文主要探討三五族化合物半導體高載子遷移率電晶體之臨界電壓調變以及其相關特性之分析。在本篇論文中,主要利用兩種策略來調變元件之臨界電壓以達到增強型元件,分別為鰭狀通道的應用以及氟離子摻雜技術。首先,我們將鰭狀通道應用於窄能隙之砷化銦鎵異質結構上。元之最窄鰭寬為54奈米,對應的臨界電壓為0.56伏,且從平面元件微縮至最窄鰭寬時,臨界電壓往正調變了2.98伏。藉由此結果可知鰭狀通道對於調變臨界電壓是有效的。而電性圖也顯示隨著較窄的鰭狀通道具有較明顯的閘極漏流,此為鰭狀通道側壁漏流所致。另一方面,我們也將鰭狀通道應用在寬能隙之氮化鎵上。如同砷化銦鎵元件,氮化鎵之元件顯現出相同之臨界電壓調變趨勢。如同預期,寬能隙的氮化鎵具有較低的閘極漏流,此乃歸因於較寬能隙的材料具有較高的蕭特基能障。另一方面,為了能更了解鰭狀通道元件之開關機制,亦使用了三維度之泊松-飄移擴散載子模型進行模擬。由通道中之載子濃度分布可看出鰭狀通道中的載子除了傳統的縱向分佈調變外,亦會呈現橫向分佈的調變;而能帶圖的模擬也可觀察到鰭狀通道的能帶較平面元件更早被拉起。由此模擬結果可發現,當鰭狀通道的寬度到達一定程度時,元件將提早被關閉,我們將此現象稱為「提早關閉效應」。
另一方面,我們也藉由氟離子摻雜的技術將氮化鎵金氧半高載子遷移率電晶體之臨界電壓進行調變。由實驗可看出5分鐘之氟離子處理可使元件之臨界電應調整至1.15伏。藉由脈衝與直流偏壓的量測,我們可看到元件之臨界電壓皆會產生永久性的正向偏移,此偏移可再藉由固定負偏壓將元件之臨界電壓重置。由此結果我們可知,元件中缺陷之放射時間常數非常的長,可以被視為是氧化層中的邊緣缺陷,而此邊緣缺陷乃肇因於熱退火處理時,氟離子擴散所導致之結果。
zh_TW
dc.description.abstractThis dissertation mainly focuses on the strategies of threshold-voltage (Vth) modulation to achieve E-mode operation for III-V high-electron-mobility transistors (HEMTs). First one is to form the fin-shaped channel on HEMT with the Schottky-gate which is called “Schottky-gate Fin-HEMT”. For the InGaAs device, Vth can be adjusted to 0.56 V with fin width (Wfin) of 54 nm. The positive Vth shift can be observed with the Wfin scaling and the total movement of Vth from planar to 54-nm-Wfin device is +2.98 V. However, with the Wfin scaling, the gate leakage also becomes significant which is caused by the sidewall leakage. AlGaN/GaN Schottky-gate Fin-HEMT also exhibits the same trend of the Vth modulation with lower gate leakage due to the higher bandgap of GaN. In order to further investigate the ON/OFF switching mechanism, simulation with the 3-dimensional Poisson and drift-diffusion model is applied. For the fin device, carrier concentration in channel is modulated both vertically and laterally. On the other hand, band diagram suggests that it is pulled up more rapidly than the planar device. These results indicate that once the fin is narrow enough, channel can be pinched off earlier than the planar device which can be regarded as “early pinch-off effect”.
Second approach to modulate the Vth is to utilize the fluorine-doped technique to form the F-doped MIS-HEMT. Positive Vth of 1.15 V with 5-minute F-plasma is achieved. Through the pulsed I-V and DC stress measurement, a retentive Vth shift is observed which can be recovered through a negative bias. This result indicates that the trap in the gate oxide is characterized by long emission time constant which can be regarded as border trap and is caused by the F diffusion during the annealing.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:13:50Z (GMT). No. of bitstreams: 1
ntu-108-D02943026-1.pdf: 7068241 bytes, checksum: f62d3826667c14861db545e462d0fba9 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents國立台灣大學博士學位論文 口試委員審定書 I
論文學術倫理聲明 II
致謝 III
摘要 VII
Abstract VIII
Table of Contents IX
List of Figures XII
List of Tables XVII
Chapter 1. Introduction
1.1. III-V Compound Semiconductors 1
1.2. Development of III-V Compound Transistors 5
1.3. Project Goal and Dissertation Outline 7
Chapter 2. Physics and Device Design of InGaAs and GaN HEMTs
2.1. Chapter Scope 9
2.2. Fundamentals of III-V Compound HEMT 9
2.3. Polarization in GaN-based Heterostructures 13
2.4. Fabrication process of InGaAs- and GaN-based HEMTs 17
2.4.1. Conventional InGaAs pHEMT Fabrication 17
2.4.2. Conventional AlGaN/GaN HEMT Fabrication 19
2.5. E-mode Approaches for the III-V HEMTs 22
2.5.1. The Vth adjustment for the InGaAs-based HEMT 23
2.5.2. The Vth adjustment for the GaN-based HEMT 23
Chapter 3. InGaAs-based Schottky-gate Fin-HEMTs
3.1. Chapter Scope 27
3.2. Introduction of InGaAs-based Schottky-gate Fin-HEMT 28
3.3. Device Fabrication 31
3.4. DC Characteristics 33
3.4.1. Output and transfer characteristics 33
3.4.2. Effectiveness of Wfin and Vth modulation 35
3.5. Conclusions 40
Chapter 4. AlGaN/GaN Schottky-gate Fin-HEMTs and the Investigation of Switching Mechanism
4.1. Chapter Scope 42
4.2. Introduction of GaN-based Schottky-gate Fin-HEMT 43
4.3. Device Fabrication 45
4.4. DC characteristics 48
4.5. Investigation of Switching Mechanism 54
4.6. Conclusions 60
Chapter 5. Threshold Voltage Instability of the E-mode GaN MIS-HEMTs
5.1. Chapter Scope 62
5.2. Introductions 63
5.3. Fabrication Process 64
5.4. DC characteristics 66
5.5. Retentive Vth shift and the pulse measurement 71
5.6. Trapping and de-trapping of the border trap effect 74
5.7. Conclusions 79
Chapter 6. Conclusion
6.1. Summary 81
6.2. Future Work 83
References 84
Publication List 98
dc.language.isoen
dc.subject氮化鎵zh_TW
dc.subject砷化銦鎵zh_TW
dc.subject高載子遷移率電晶體zh_TW
dc.subject臨界電壓zh_TW
dc.subject增強型元件zh_TW
dc.subject鰭狀通道zh_TW
dc.subject氟離子摻雜zh_TW
dc.subject三五族化合物半導體zh_TW
dc.subject蕭特基能障zh_TW
dc.subject泊松-飄移擴散載子模型zh_TW
dc.subject提早關閉效應zh_TW
dc.subject氟離子摻雜zh_TW
dc.subject脈衝量測zh_TW
dc.subject邊緣缺陷zh_TW
dc.subject放射時間常數zh_TW
dc.subject側壁zh_TW
dc.subjectsidewallen
dc.subjectInGaAsen
dc.subjectGaNen
dc.subjectHEMTen
dc.subjectthreshold voltageen
dc.subjectE-modeen
dc.subjectFin-HEMTen
dc.subjectSchottkyen
dc.subjectIII-Ven
dc.subjectPoisson and drift-diffusion modelen
dc.subjectearly pinch-off effecten
dc.subjectfluorine-dopeden
dc.subjectpulsed I-Ven
dc.subjectborder trapen
dc.subjectemission time constanten
dc.title三五族高載子遷移率電晶體與其臨界電壓調變之研究zh_TW
dc.titleInvestigation of III-V High Electron Mobility Transistors and the Approaches of the Threshold-voltage Modulationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee林浩雄,吳育任,張書維,陳仕鴻,邱顯欽
dc.subject.keyword三五族化合物半導體,氮化鎵,砷化銦鎵,高載子遷移率電晶體,臨界電壓,增強型元件,鰭狀通道,氟離子摻雜,側壁,蕭特基能障,泊松-飄移擴散載子模型,提早關閉效應,氟離子摻雜,脈衝量測,邊緣缺陷,放射時間常數,zh_TW
dc.subject.keywordIII-V,InGaAs,GaN,HEMT,threshold voltage,E-mode,Fin-HEMT,Schottky,sidewall,Poisson and drift-diffusion model,early pinch-off effect,fluorine-doped,pulsed I-V,border trap,emission time constant,en
dc.relation.page102
dc.identifier.doi10.6342/NTU201903688
dc.rights.note有償授權
dc.date.accepted2019-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved