Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73893
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳達仁 | |
dc.contributor.author | Yu-Ting Lin | en |
dc.contributor.author | 林郁婷 | zh_TW |
dc.date.accessioned | 2021-06-17T08:13:01Z | - |
dc.date.available | 2024-08-18 | |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-15 | |
dc.identifier.citation | Betts, J. G., Desaix, P., Johnson, E., Johnson, J. E., Korol, O., Kruse, D., ... and Young, K. A. (2013). OpenStax College and Rice University. Anatomy and physiology.
GÜNAL, I., KÖSE, N., Erdogan, O., GÖKTÜRK, E., and Seber, S. (1996). Normal range of motion of the joints of the upper extremity in male subjects, with special reference to side. JBJS, 78(9), 1401. Hislop, H., Avers, D., and Brown, M. (2013). Daniels and Worthingham's muscle Testing-E-Book: Techniques of manual examination and performance testing. Elsevier Health Sciences. Palmer, M. L., and Epler, M. E. (1990). Clinical assessment procedures in physical therapy (pp. 299-335). Philadelphia: JB Lippincott Company. Hortobagyi, T. I. B. O. R., Hill, J. P., Houmard, J. A., Fraser, D. D., Lambert, N. J., and Israel, R. G. (1996). Adaptive responses to muscle lengthening and shortening in humans. Journal of applied physiology, 80(3), 765-772. Paschalis, V., Nikolaidis, M. G., Theodorou, A. A., Panayiotou, G., Fatouros, I. G., Koutedakis, Y., and Jamurtas, A. Z. (2011). A weekly bout of eccentric exercise is sufficient to induce health-promoting effects. Med Sci Sports Exerc, 43(1), 64-73. Vogt, M., and Hoppeler, H. H. (2014). Eccentric exercise: mechanisms and effects when used as training regime or training adjunct. Journal of applied Physiology, 116(11), 1446-1454. Douglas, J., Pearson, S., Ross, A., and McGuigan, M. (2017). Chronic adaptations to eccentric training: a systematic review. Sports Medicine, 47(5), 917-941. Simonson, R. (1998). U.S. Patent No. 5,722,921. Washington, DC: U.S. Patent and Trademark Office. Simonson, R. (2007). U.S. Patent No. 7,282,016 B2. Washington, DC: U.S. Patent and Trademark Office. Kissel, R. M., Eubanks, E. G., Houston, J. M., Dye, S. A., Schoonover, D. A., and Cottrell, M. R. (2011). U.S. Patent No. 8,016,725 B2. Washington, DC: U.S. Patent and Trademark Office. Wu, T. M., Wang, S. Y., and Chen, D. Z. (2011). Design of an exoskeleton for strengthening the upper limb muscle for overextension injury prevention. Mechanism and Machine Theory, 46(12), 1825-1839. Wu, T. M., and Chen, D. Z. (2013). Dynamic analysis and preliminary evaluation of a spring-loaded upper limb exoskeleton for resistance training with overload prevention. Journal of Mechanics, 29(1), 35-44. Wu, T. M., and Chen, D. Z. (2014). Biomechanical study of upper-limb exoskeleton for resistance training with three-dimensional motion analysis system. Journal of Rehabilitation Research and Development, 51(1) Stein, J., Narendran, K., McBean, J., Krebs, K., and Hughes, R. (2007). Electromyography-controlled exoskeletal upper-limb–powered orthosis for exercise training after stroke. American journal of physical medicine and rehabilitation, 86(4), 255-261. Vitiello, N., Lenzi, T., Roccella, S., De Rossi, S. M. M., Cattin, E., Giovacchini, F., ... and Carrozza, M. C. (2012). NEUROExos: A powered elbow exoskeleton for physical rehabilitation. IEEE Transactions on Robotics, 29(1), 220-235. Ripel, T., Krejsa, J., Hrbacek, J., and Cizmar, I. (2014). Active elbow orthosis. International Journal of Advanced Robotic Systems, 11(9), 143. Stienen, A. H., Hekman, E. E., Prange, G. B., Jannink, M. J., van der Helm, F. C., and van der Kooij, H. (2009). Freebal: design of a dedicated weight-support system for upper-extremity rehabilitation. Journal of medical devices, 3(4), 041009. Lenzo, B., Fontana, M., Marcheschi, S., Salsedo, F., Frisoli, A., and Bergamasco, M. (2016). Trackhold: a novel passive arm-support device. Journal of Mechanisms and Robotics, 8(2), 021007. Rahman, T., Sample, W., Jayakumar, S., and King, M. M. (2006). Passive exoskeletons for assisting limb movement. Journal of rehabilitation research and development, 43(5), 583. Lin, P. Y., Shieh, W. B., and Chen, D. Z. (2013). A theoretical study of weight-balanced mechanisms for design of spring assistive mobile arm support (MAS). Mechanism and Machine Theory, 61, 156-167. Leontijevic, B., Pazin, N., Bozic, P. R., Kukolj, M., Ugarkovic, D., and Jaric, S. (2012). Effects of loading on maximum vertical jumps: Selective effects of weight and inertia. Journal of electromyography and kinesiology, 22(2), 286-293. Leontijevic, B., Pazin, N., Kukolj, M., Ugarkovic, D., and Jaric, S. (2013). Selective effects of weight and inertia on maximum lifting. International journal of sports medicine, 34(03), 232-238. Djuric, S., Cuk, I., Sreckovic, S., Mirkov, D., Nedeljkovic, A., and Jaric, S. (2016). Selective effects of training against weight and inertia on muscle mechanical properties. International journal of sports physiology and performance, 11(7), 927-932. Jhuang, C. S., Kao, Y. Y., and Chen, D. Z. (2018). Design of one DOF closed-loop statically balanced planar linkage with link-collinear spring arrangement. Mechanism and Machine Theory, 130, 301-312. Dempster, W. T., Gabel, W. C., and Felts, W. J. (1959). The anthropometry of the manual work space for the seated subject. American journal of physical anthropology, 17(4), 289-317. Drillis, R., Contini, R., and Bluestein, M. (1969). Body segment parameters. New York University, School of Engineering and Science. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73893 | - |
dc.description.abstract | 本論文提出可在同一裝置做上肢訓練及復健的設計,在上臂固定情況下,此上肢活動具有一個肘關節的自由度,並以二頭肌訓練及復健為示範例。研究目的是希望能開發出一種裝置,在肌肉訓練時如同重量塊可以提供一個穩定的力而且沒有慣性的影響,在復健時避免使用致動器來控制輔助力之大小。在肌肉訓練及復健下,分別定義並區分二頭肌、三頭肌、前臂重量及裝置對於肘關節所造成之力矩。提出一現有靜平衡橢圓規機構利用,將人體運動之力或手臂重量當作靜平衡機構之負載重量,因此機構可提供等同於重量訓練塊提供之力,卻無慣性所造成之負面影響,亦可根據復健程度不同,平衡部分或全部手臂重量。
以二頭肌肌肉訓練為例,裝置最小彈簧常數可以藉由靜平衡公式,給予手臂長度範圍及重量、設定訓練重量範圍及訓練重量級距來得到。使用者可以根據不同訓練重量需求來調整彈簧接點位置,本文亦藉由模擬來驗證裝置和重量塊對肘關節所造成之力矩為相同。以二頭肌復健為例,裝置最小彈簧常數以相似之過程藉由靜平衡公式,給予手臂長度範圍及重量、設定待平衡之手臂重量及其級距來得到。使用者可以根據不同復健程度來調整彈簧接點位置,藉由模擬來驗證復健過程中手臂重量對於肘關節之力矩確實下降。此裝置之設計亦可推廣至三頭肌之訓練及復健。 | zh_TW |
dc.description.abstract | The purpose of this thesis is to propose exercise/rehabilitation of human upper limb can be performed within the same device. Direction and magnitude among torques and forces applied by muscle, weight of forearm and device are identified and distinguished during upper limb exercise/rehabilitation motion respectively. Instead of using weight stacks, an elliptical trammel type statically balanced mechanism (SBM) with link-collinear springs is used such that an equivalent force provided by weight stacks can be obtained. Device for biceps exercise is used as an illustrative example. By given range of length and mass of forearm, desired range of exercise weight and increment of weight adjustment, minimum spring stiffness is determined. Therefore, different exercise weight can be performed by adjusting spring attachment point. It’s verified that torques during exercise provided by the device and by weight stacks are the same. Device for biceps rehabilitation is by given range of length and mass of forearm, desired range of weight and percentage of forearm weight to be balanced and increment of percentage adjustment, minimum spring stiffness is determined. Therefore, less weight of forearm rehabilitation can be performed by adjusting spring attachment point. It’s also verified that less torques on elbow joint during rehabilitation motion. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:13:01Z (GMT). No. of bitstreams: 1 ntu-108-R06522609-1.pdf: 1996462 bytes, checksum: e2e0b8d6462884b286b101ebceae450f (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 I
ABSTRACT II Chapter 1 Introduction 1 1.1 Background 1 1.2 Overview of related works 4 1.3 Motivation and preview 6 Chapter 2 Identify and Distinguished Torques/Forces of Biceps/Triceps Muscle in Exercise/Rehabilitation Device 9 Chapter 3 Device with A Movement Arm and An Elliptical Trammel Type SBM 14 3.1 Human upper limb and movement and SBM in the device 14 3.2 Combination of movement arm and SBM 15 Chapter 4 Design of Biceps Brachii Exercise Device 18 4.1 Constraints for biceps exercise device 18 4.2 Design flow 24 4.3 Embodiment design of device for biceps exercise 29 Chapter 5 Design of Biceps Brachii Rehabilitation and Exercise Within a Device 31 5.1 Redesign biceps exercise device for biceps rehabilitation 31 5.2 Embodiment design of device for biceps rehabilitation and exercise 34 Chapter 6 Conclusions and Future Works 39 6.1 Conclusions 39 6.2 Future works 40 Reference 41 | |
dc.language.iso | en | |
dc.title | 無重量塊之二頭肌訓練及復健機構設計 | zh_TW |
dc.title | Design of A Biceps Muscle Exercise/Rehabilitation Device without Weight Stacks | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林柏廷,吳宗明 | |
dc.subject.keyword | 上肢,阻力訓練,復健,重力平衡,手肘, | zh_TW |
dc.subject.keyword | upper limb,resistance exercise,rehabilitation,gravity balanced,elbow, | en |
dc.relation.page | 45 | |
dc.identifier.doi | 10.6342/NTU201901966 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
dc.date.embargo-lift | 2300-01-01 | - |
Appears in Collections: | 機械工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 1.95 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.