請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73885
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韓玉山(Yu-San Han) | |
dc.contributor.author | Chi Ma | en |
dc.contributor.author | 馬霽 | zh_TW |
dc.date.accessioned | 2021-06-17T08:12:48Z | - |
dc.date.available | 2023-08-18 | |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-15 | |
dc.identifier.citation | Ahn, H., Yamada, Y., Okamura, A., Horie, N., Mikawa, N., Tanaka, S. et al. (2012). Effect of water temperature on embryonic development and hatching time of the Japanese eel Anguilla japonica. Aquaculture, 330, 100-105.
Alldredge, A.L. (1995). Topical studies in oceanography. Aggregation in marine systems. Deep-Sea Res. II, 42, 1-273. Aoyama, J., Watanabe, S., Miller, M.J., Mochioka, N., Otake, T., Yoshinaga, T. et al. (2014). Spawning sites of the Japanese eel in relation to oceanographic structure and the West Mariana Ridge. PLoS One, 9, e88759. Arribas, C., Fernández-Delgado, C., Oliva-Paterna, F.J. & Drake, P. (2012). Oceanic and local environmental conditions as forcing mechanisms of the glass eel recruitment to the southernmost European estuary. Estuarine, Coastal and Shelf Science, 107, 46-57. Bonhommeau, S., Chassot, E. & Rivot, E. (2008). Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea. Fisheries Oceanography, 17, 32-44. Capotondi, A., Wittenberg, A.T., Newman, M., Di Lorenzo, E., Yu, J.-Y., Braconnot, P. et al. (2015). Understanding ENSO diversity. Bulletin of the American Meteorological Society, 96, 921-938. Casselman, J.M. (2003). Dynamics of resources of the American eel, Anguilla rostrata: declining abundance in the 1990s. In: Eel biology. Springer, pp. 255-274. Castonguay, M. & McCleave, J.D. (1987). Vertical distributions, diel and ontogenetic vertical migrations and net avoidance of leptocephali of Anguilla and other common species in the Sargasso Sea. Journal of Plankton Research, 9, 195-214. Chang, Y.-L., Sheng, J., Ohashi, K., Béguer-Pon, M. & Miyazawa, Y. (2015). Impacts of interannual ocean circulation variability on Japanese eel larval migration in the western North Pacific Ocean. PloS one, 10, e0144423. Chang, Y.-L.K., Miller, M.J., Tsukamoto, K. & Miyazawa, Y. (2018a). Effect of larval swimming in the western North Pacific subtropical gyre on the recruitment success of the Japanese eel. PloS one, 13, e0208704. Chang, Y.-L.K., Miyazawa, Y., Miller, M.J. & Tsukamoto, K. (2018b). Potential impact of ocean circulation on the declining Japanese eel catches. Scientific reports, 8, 5496. Chang, Y. (2004). Studies on the salinity tolerance of larvae of Japanese eel (Anguilla japonica). J Taiwan Fish Res, 12, 25-31. Dekker, W. (1998). Long-term trends in the glasseels immigrating at Den Oever, the Netherlands. Bulletin Français de la Pêche et de la Pisciculture, 199-214. Han, Y.-S., Tzeng, W.-N. & Liao, I.-C. (2009). Time series analysis of Taiwanese catch data of Japanese glass eels Anguilla japonica: possible effects of the reproductive cycle and El Niño events. Zool Stud, 48, 632-639. Han, Y.-S., Wu, C.-R. & Iizuka, Y. (2016). Batch-like arrival waves of glass eels of Anguilla japonica in offshore waters of Taiwan. Zoological Studies, 55. Hanel, R., Stepputtis, D., Bonhommeau, S., Castonguay, M., Schaber, M., Wysujack, K. et al. (2014). Low larval abundance in the Sargasso Sea: new evidence about reduced recruitment of the Atlantic eels. Naturwissenschaften, 101, 1041-1054. Houde, E.D. (2008). Emerging from Hjort’s shadow. Journal of Northwest Atlantic Fishery Science, 41, 53-70. Hsiung, K.-M., Kimura, S., Han, Y.-S., Takeshige, A. & Iizuka, Y. (2018). Effect of ENSO events on larval and juvenile duration and transport of Japanese eel (Anguilla japonica). PloS one, 13, e0195544. Hsu, A.C., Xue, H., Chai, F., Xiu, P. & Han, Y.S. (2017). Variability of the Pacific North Equatorial Current and its implications on Japanese eel (Anguilla japonica) larval migration. Fisheries Oceanography, 26, 251-267. Ishikawa, S., Suzuki, K., Inagaki, T., Watanabe, S., Kimura, Y., Okamura, A. et al. (2001). Spawning time and place of the Japanese eel Anguilla japonica in the North Equatorial Current of the western North Pacific Ocean. Fisheries science, 67, 1097-1103. Itakura, H., Kitagawa, T., Miller, M.J. & Kimura, S. (2015). Declines in catches of Japanese eels in rivers and lakes across Japan: Have river and lake modifications reduced fishery catches? Landscape and ecological engineering, 11, 147-160. Kajihara, T. (1988). Distribution of Anguilla japonica leptocephali in western Pacific during September 1986. Nippon Suisan Gakkaishi, 54, 929-933. Kettle, A.J., Asbjørn Vøllestad, L. & Wibig, J. (2011). Where once the eel and the elephant were together: decline of the European eel because of changing hydrology in southwest Europe and northwest Africa? Fish and Fisheries, 12, 380-411. Kettle, A.J., Bakker, D.C. & Haines, K. (2008). Impact of the North Atlantic Oscillation on the trans‐Atlantic migrations of the European eel (Anguilla anguilla). Journal of Geophysical Research: Biogeosciences, 113. Kim, H., Kimura, S., Shinoda, A., Kitagawa, T., Sasai, Y. & Sasaki, H. (2007). Effect of El Niño on migration and larval transport of the Japanese eel (Anguilla japonica). ICES Journal of Marine Science, 64, 1387-1395. Kimura, S., Inoue, T. & Sugimoto, T. (2001). Fluctuation in the distribution of low‐salinity water in the North Equatorial Current and its effect on the larval transport of the Japanese eel. Fisheries Oceanography, 10, 51-60. Kimura, S. & Tsukamoto, K. (2006). The salinity front in the North Equatorial Current: a landmark for the spawning migration of the Japanese eel (Anguilla japonica) related to the stock recruitment. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 315-325. Kurokawa, T., Okamoto, T., Gen, K., Uji, S., Murashita, K., Unuma, T. et al. (2008). Influence of water temperature on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. Journal of the World Aquaculture Society, 39, 726-735. Kuroki, M., Fukuda, N., Yamada, Y., Okamura, A. & Tsukamoto, K. (2010). Morphological changes and otolith growth during metamorphosis of Japanese eel leptocephali in captivity. Coast Mar Sci, 34, 31-38. Lin, Y.-F., Wu, C.-R. & Han, Y.-S. (2017). A combination mode of climate variability responsible for extremely poor recruitment of the Japanese eel (Anguilla japonica). Scientific reports, 7, 44469. Masuda, Y., Imaizumi, H., Oda, K., Hashimoto, H., Teruya, K. & Usuki, H. (2011). Japanese eel Anguilla japonica larvae can metamorphose into glass eel within 131 days after hatching in captivity (Short Paper). Nippon Suisan Gakkaishi, 77, 416. Miller, M.J., Chikaraishi, Y., Ogawa, N.O., Yamada, Y., Tsukamoto, K. & Ohkouchi, N. (2013). A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biology letters, 9, 20120826. Miller, M.J., Feunteun, E. & Tsukamoto, K. (2015). Did a “perfect storm” of oceanic changes and continental anthropogenic impacts cause northern hemisphere anguillid recruitment reductions? ICES Journal of Marine Science, 73, 43-56. Miller, M.J. & Tsukamoto, K. (2016). The ecology of oceanic dispersal and survival of anguillid leptocephali. Canadian Journal of Fisheries and Aquatic Sciences, 74, 958-971. Okamoto, T., Kurokawa, T., Gen, K., Murashita, K., Nomura, K., Kim, S.-K. et al. (2009). Influence of salinity on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. Aquaculture, 293, 113-118. Okamura, A., Horie, N., Mikawa, N., Yamada, Y. & Tsukamoto, K. (2018). Influence of temperature and feeding regimes on growth and notochord deformity in reared Anguilla japonica leptocephali. Fisheries science, 84, 505-512. Okamura, A., Yamada, Y., Mikawa, N., Horie, N., Utoh, T., Kaneko, T. et al. (2009). Growth and survival of eel leptocephali (Anguilla japonica) in low-salinity water. Aquaculture, 296, 367-372. Otake, T., Inagaki, T., Hasumoto, H., Mochioka, N. & Tsukamoto, K. (1998). Diel vertical distribution of Anguilla japonica leptocephali. Ichthyological Research, 45, 208-211. Palstra, A., Heppener, D., Van Ginneken, V., Székely, C. & Van den Thillart, G. (2007). Swimming performance of silver eels is severely impaired by the swim-bladder parasite Anguillicola crassus. Journal of Experimental Marine Biology and Ecology, 352, 244-256. Robinet, T.T. & Feunteun, E.E. (2002). Sublethal effects of exposure to chemical compounds: a cause for the decline in Atlantic eels? Ecotoxicology, 11, 265-277. Rodríguez-Díaz, L. & Gómez-Gesteira, M. (2017). Can Lagrangian models reproduce the migration time of European eel obtained from otolith analysis? Journal of Sea Research, 130, 17-23. Rypina, I.I., Llopiz, J.K., Pratt, L.J. & Lozier, M.S. (2014). Dispersal pathways of American eel larvae from the Sargasso Sea. Limnology and Oceanography, 59, 1704-1714. Shinoda, A., Aoyama, J., Miller, M.J., Otake, T., Mochioka, N., Watanabe, S. et al. (2011). Evaluation of the larval distribution and migration of the Japanese eel in the western North Pacific. Reviews in Fish Biology and Fisheries, 21, 591-611. Sjöberg, N.B., Petersson, E., Wickström, H. & Hansson, S. (2009). Effects of the swimbladder parasite Anguillicola crassus on the migration of European silver eels Anguilla anguilla in the Baltic Sea. Journal of Fish Biology, 74, 2158-2170. Tanaka, H., Naito, Y., Davis, N.D., Urawa, S., Ueda, H. & Fukuwaka, M.-a. (2005). First record of the at-sea swimming speed of a Pacific salmon during its oceanic migration. Marine Ecology Progress Series, 291, 307-312. Tesch, F.W. (2008). The eel. John Wiley & Sons. Tsukamoto, K., Aoyama, J. & Miller, M.J. (2009). Present status of the Japanese eel: resources and recent research. In: Eels at the edge: American Fisheries Society, symposium. American Fisheries Society Bethesda, MD, pp. 21-35. Tsukamoto, K., Chow, S., Otake, T., Kurogi, H., Mochioka, N., Miller, M.J. et al. (2011). Oceanic spawning ecology of freshwater eels in the western North Pacific. Nature communications, 2, 179. Tsukamoto, K., Umezawa, A. & Ozawa, T. (1992). Age and Growth of Anguilla japonica Leptocephali Collected in Western North Pacific in July 1990. Nippon Suisan Gakkaishi, 58, 457-459. Turner, J.T. (2002). Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic microbial ecology, 27, 57-102. Tzeng, W.-N., Tseng, Y.-H., Han, Y.-S., Hsu, C.-C., Chang, C.-W., Di Lorenzo, E. et al. (2012). Evaluation of multi-scale climate effects on annual recruitment levels of the Japanese eel, Anguilla japonica, to Taiwan. PLoS One, 7, e30805. Wiener, J.G. & Sandheinrich, M.B. (2010). Contaminants in the Upper Mississippi River: historic trends, responses to regulatory controls, and emerging concerns. Hydrobiologia, 640, 49-70. Wood, S.N. (2017). Generalized additive models: an introduction with R. Chapman and Hall/CRC. Yamada, Y., Okamura, A., Mikawa, N., Utoh, T., Horie, N., Tanaka, S. et al. (2009). Ontogenetic changes in phototactic behavior during metamorphosis of artificially reared Japanese eel Anguilla japonica larvae. Marine Ecology Progress Series, 379, 241-251. Yoshinaga, T., Miller, M.J., Yokouchi, K., Otake, T., Kimura, S., Aoyama, J. et al. (2011). Genetic identification and morphology of naturally spawned eggs of the Japanese eel Anguilla japonica collected in the western North Pacific. Fisheries Science, 77, 983-992. Zenimoto, K., Kitagawa, T., Miyazaki, S., Sasai, Y., Sasaki, H. & Kimura, S. (2009). The effects of seasonal and interannual variability of oceanic structure in the western Pacific North Equatorial Current on larval transport of the Japanese eel Anguilla japonica. Journal of Fish Biology, 74, 1878-1890. Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A. & Smith, G.M. (2009). Mixed effects models and extensions in ecology with R. Springer Science & Business Media. Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution, 1, 3-14. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73885 | - |
dc.description.abstract | 日本鰻 (Anguilla japonica) 為東亞重要經濟魚種,由於無法有效率的人工繁殖,因此極度仰賴漁業捕撈,而自 1980年以來,資源量有急劇下降的趨勢,捕獲量年間的波動也對產業有巨大的影響。根據過去日本鰻生活史調查指出,其於夏季洄游至西太平洋產卵場繁殖,柳葉鰻隨著北赤道洋流及黑潮輸送至東亞國家,並進入河川生長。因此過去研究指出洋流流場的年間變異,影響洄游的輸送路徑,是導致補充量的波動或極端減少的事件可能原因。然而研究大多僅探討海洋環境對鰻苗的物理性影響,並未以生物角度進行評估野。因此本研究以日本鰻鰻苗體長作為指標,探討環境因子與鰻苗的關係。於2010-2018年間至宜蘭河河口採集鰻苗,並記錄體長,再以數值模擬方式建構出所採集之鰻苗可能的洄游路徑,根據洄游路徑中鰻苗隨著洋流的時空分布,擷取當下海域上衛星遙測所得之環境因子資料。最後以廣義加成性模型 (Generalized additive model) 分析環境因子與鰻苗體長變異的關係。研究結果計算出的最佳模型對於體長變異的解釋率為57.3%,且日本鰻鰻苗在聖嬰年、產卵場溫度於21至24.5度、洄游路徑溫度高於24度,以及產卵場葉綠素濃度於0.03-0.07 mg/m3、洄游路徑累積葉綠素濃度高於13 mg/m3、產卵場鹽度介於35.1至35.3 psu 時,會有較大體長。此外,產卵場的環境與洄游路徑環境相比,對於體長有較大的影響。總結研究結果,環境因子對於鰻苗體長的影響大致與過去養殖實驗研究的結果符合,然而關於產卵場溫度的影響則有所不確定,有待未來研究詳細探討。在聖嬰年出現較長體長,則可能與鰻苗在洋流輸送的時間較長,以致生長的日齡較長,因此體長較長。另外,日本鰻及其他鰻鱺屬物種在產卵時具有同步生殖行為 (synchronized spawning),因此在產卵場中的幼魚族群量大小,可能影響種內或種間競爭食物資源的強度,為影響本研究結果的潛在因素。本研究以與過去不同的方法及觀點探討海洋環境對於日本鰻鰻苗的影響,未來研究結果也可用以探討日本鰻資源量波動的機制。 | zh_TW |
dc.description.abstract | Japanese eel (Anguilla japonica) is an important commercial freshwater fish in East Asia. However, eel aquaculture is a typical capture‐based aquaculture. Recruitment of Japanese eel has declined since 1980s, and large interannual fluctuations were also observed. The causes of decline or extremely poor recruitment events remain unclear. By using numerical modelling method to reproduce larval migration routes, previous studies showed that the inter-annual variability of ocean circulation may influence the migration success of Japanese eel. However, the effect of environmental factor on wild larvae is less discussed by biological points of view. In this study, a recent 8–yr total length data of Japanese glass eel was used as representative of eel larval condition to evaluate the effect of environment by generalized additive model. And the environment experienced by eel larvae was based on a coupled biological physical model which were the used to estimate the migration routes. The result of generalized additive model showed larger total length of Japanese glass eel were observed at 21-24.5°C for spawning area temperature, higher than 24°C for migration routes temperature, 0.03-0.07 mg/m3 for spawning area chlorophyll concentration, higher than 13 mg/m3 for accumulated migration routes chlorophyll concentration with increasing trend, 35.1-35.3 psu for spawning area salinity, and during El Niño year. The environment of spawning area has greater effect on glass eel total length. The results correspond to previous studies in laboratory experiment, except the effect of spawning area temperature. The synchronized spawning behavior in Japanese eel may cause the density-dependent effect which potentially influence the result of this study. This study provided a different perspective of environmental effect on Japanese larvae, and may help to understand the cause of recruitment fluctuation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:12:48Z (GMT). No. of bitstreams: 1 ntu-108-R06b45012-1.pdf: 2679277 bytes, checksum: a0c943cb786a2426784857afeaaffaa2 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………i
Abstract………………………………………………………………iii Contents…………………………………………………………………v Figure contents………………………………………………………vi Table legend…………………………………………………………vii 1. Introduction…………………………………………………………1 2. Materials and Methods……………………………………………5 2.1 Glass eel collection and total length measurement…………5 2.2 Simulation of migration routes………………………………6 2.3 Environmental data………………………………………………8 2.4 Data analysis…………………………………………………………………10 3. Result………………………………………………………………13 3.1 Total length and estimated hatching date of A. japonica glass eel……………13 3.2 Interannual variability in the environment………………13 3.3 Relationship with environmental factors…………………14 4. Discussion…………………………………………………………16 4.1 Estimated migration routes……………………………………16 4.2 Relationship with environmental factors…………………18 4.3 Effect of ENSO…………………………………………………22 5. Conclusion…………………………………………………………24 6. Reference……………………………………………………………34 | |
dc.language.iso | zh-TW | |
dc.title | 日本鰻鰻苗體長變異與洄游路徑之環境因子的關係 | zh_TW |
dc.title | Variability of total length of Japanese glass eels in relation to the environmental factors during migration route | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 柯佳吟(Chia-Ying Ko) | |
dc.contributor.oralexamcommittee | 曾萬年(Wan-Nian Tseng),張以杰(Yi-Jay Cheng) | |
dc.subject.keyword | 日本鰻,體長,環境因子,洄游路徑,廣義加成性模型, | zh_TW |
dc.subject.keyword | Japanese eel,Total length,Environmental factor,Migration routes,Generalized additive model, | en |
dc.relation.page | 40 | |
dc.identifier.doi | 10.6342/NTU201903466 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-15 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。