Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73868
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor阮雪芬
dc.contributor.authorY-Geh Liawen
dc.contributor.author廖玉潔zh_TW
dc.date.accessioned2021-06-17T08:12:20Z-
dc.date.available2024-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citationReferences
Allan, V. andR.Vale. 1994. “Movement of Membrane Tubules along Microtubules in Vitro: Evidence for Specialised Sites of Motor Attachment.” Journal of Cell Science 107 ( Pt 7):1885–97.
Archer, Stephen L. 2013. “Mitochondrial Dynamics — Mitochondrial Fission and Fusion in Human Diseases” edited by D. L.Longo. New England Journal of Medicine 369(23):2236–51.
Baker, Monya. 2010. “Taking a Long, Hard Look.” Nature 466(7310):1137–38.
Billups, Brian andIan D.Forsythe. 2002. “Presynaptic Mitochondrial Calcium Sequestration Influences Transmission at Mammalian Central Synapses.” The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 22(14):5840–47.
van derBliek, A. M., Q.Shen, andS.Kawajiri. 2013. “Mechanisms of Mitochondrial Fission and Fusion.” Cold Spring Harbor Perspectives in Biology 5(6):a011072–a011072.
Brill, Monika S., TatjanaKleele, LauraRuschkies, MengzheWang, Natalia A.Marahori, Miriam S.Reuter, Torben J.Hausrat, EmilyWeigand, MatthewFisher, AndreaAhles, StefanEngelhardt, Derron L.Bishop, MatthiasKneussel, andThomasMisgeld. 2016. “Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination.” Neuron 92(4):845–56.
Cai, Qian andPrasadTammineni. 2016a. “Alterations in Mitochondrial Quality Control in Alzheimer’s Disease.” Frontiers in Cellular Neuroscience 10:24.
Cai, Qian andPrasadTammineni. 2016b. “Alterations in Mitochondrial Quality Control in Alzheimer’s Disease.” Frontiers in Cellular Neuroscience 10:24.
Caino, M. Cecilia, Jae HoSeo, AngelineAguinaldo, EricWait, Kelly G.Bryant, AndrewV.Kossenkov, James E.Hayden, ValentinaVaira, AnnamariaMorotti, StefanoFerrero, SilvanoBosari, Dmitry I.Gabrilovich, Lucia R.Languino, Andrew R.Cohen, andDario C.Altieri. 2016. “A Neuronal Network of Mitochondrial Dynamics Regulates Metastasis.” Nature Communications 7(1):13730.
Chan, David C. 2006. “Mitochondrial Fusion and Fission in Mammals.” Annual Review of Cell and Developmental Biology 22(1):79–99.
Chang, H. Y., H. C.Huang, T. C.Huang, P. C.Yang, Y. C.Wang, andH. F.Juan. 2012. “Ectopic ATP Synthase Blockade Suppresses Lung Adenocarcinoma Growth by Activating the Unfolded Protein Response.” Cancer Research 72(18):4696–4706.
Chen, Yanmin andZu-HangSheng. 2013. “Kinesin-1–Syntaphilin Coupling Mediates Activity-Dependent Regulation of Axonal Mitochondrial Transport.” The Journal of Cell Biology 202(2):351–64.
Chi, Sulene L. andSalvatoreV.Pizzo. 2006. “Cell Surface F 1 F o ATP Synthase: A New Paradigm?” Annals of Medicine 38(6):429–38.
Cross, Richard L. 1994. “Our Primary Source of ATP.” Nature 370(6491):594–95.
Dailey, Michael E., ErikManders, David R.Soll, andMarkTerasaki. 2006. “Confocal Microscopy of Living Cells.” Pp. 381–403 in Handbook Of Biological Confocal Microscopy. Boston, MA: Springer US.
Flemming, Alexandra. 2016. “Cancer: Microtubule-Straightening Compound Widens the Therapeutic Window.” Nature Reviews Drug Discovery 2016 16:1.
Flemming, Alexandra. 2017. “Microtubule-Straightening Compound Widens the Therapeutic Window.” Nature Reviews Drug Discovery 16(1):17–17.
Frigault, M. M., J.Lacoste, J. L.Swift, andC. M.Brown. 2009. “Live-Cell Microscopy - Tips and Tools.” Journal of Cell Science 122(6):753–67.
Hirokawa, N. 1998. “Kinesin and Dynein Superfamily Proteins and the Mechanism of Organelle Transport.” Science (New York, N.Y.) 279(5350):519–26.
Hoppins, Suzanne, LauraLackner, andJodiNunnari. 2007. “The Machines That Divide and Fuse Mitochondria.” Annual Review of Biochemistry 76(1):751–80.
Howard, Joe andAnthony A.Hyman. 2003. “Dynamics and Mechanics of the Microtubule plus End.” Nature 422(6933):753–58.
Huang, Tsui-Chin, Hsin-YiChang, Chun-HuaHsu, Wen-HungKuo, King-JenChang, andHsueh-FenJuan. 2008. “Targeting Therapy for Breast Carcinoma by ATP Synthase Inhibitor Aurovertin B.” Journal of Proteome Research 7(4):1433–44.
Kawai, Yoshiko, MakiKaidoh, YumikoYokoyama, andToshioOhhashi. 2013. “Cell Surface F 1 /F o ATP Synthase Contributes to Interstitial Flow-Mediated Development of the Acidic Microenvironment in Tumor Tissues.” American Journal of Physiology-Cell Physiology 305(11):C1139–50.
Labbé, Katherine, AndrewMurley, andJodiNunnari. 2014. “Determinants and Functions of Mitochondrial Behavior.” Annual Review of Cell and Developmental Biology 30(1):357–91.
Landecker, Hannah. 2009. “Seeing Things: From Microcinematography to Live Cell Imaging.” Nature Methods 6(10):707–9.
Marland, Jamie Roslin Keynes, PhilipHasel, KatherineBonnycastle, andMichael AlanCousin. 2016. “Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals.” Journal of Biological Chemistry 291(5):2080–86.
Meijering, Erik, OlehDzyubachyk, andIhorSmal. 2012. “Methods for Cell and Particle Tracking.” Pp. 183–200 in Methods in enzymology. Vol. 504.
Miller, K. E. andMichael P.Sheetz. 2004. “Axonal Mitochondrial Transport and Potential Are Correlated.” Journal of Cell Science 117(13):2791–2804.
Mishra, Prashant andDavid C.Chan. 2014. “Mitochondrial Dynamics and Inheritance during Cell Division, Development and Disease.” Nature Reviews Molecular Cell Biology 15(10):634–46.
Mishra, Prashant andDavid C.Chan. 2016. “Metabolic Regulation of Mitochondrial Dynamics.” The Journal of Cell Biology 212(4):379–87.
Moser, T. L., M. S.Stack, I.Asplin, J. J.Enghild, P.Hojrup, L.Everitt, S.Hubchak, H. W.Schnaper, andS.V.Pizzo. 1999. “Angiostatin Binds ATP Synthase on the Surface of Human Endothelial Cells.” Proceedings of the National Academy of Sciences 96(6):2811–16.
Mowery, Yvonne M. andSalvatoreVPizzo. 2008. “Targeting Cell Surface F1F0 ATP Synthase in Cancer Therapy.” Cancer Biology & Therapy 7(11):1836–38.
Ping, Holly A., Lauren M.Kraft, WeiTingChen, Amy E.Nilles, andLaura L.Lackner. 2016. “Num1 Anchors Mitochondria to the Plasma Membrane via Two Domains with Different Lipid Binding Specificities.” The Journal of Cell Biology 213(5):513–24.
Quillen, Ellen E., Gale C.Haslam, Hardeep S.Samra, DariusAmani-Taleshi, Jeffrey A.Knight, Diane E.Wyatt, Stephanie C.Bishop, Kim K.Colvert, Mark L.Richter, andPaul A.Kitos. 2006. “Ectoadenylate Kinase and Plasma Membrane ATP Synthase Activities of Human Vascular Endothelial Cells.” Journal of Biological Chemistry 281(30):20728–37.
Rastogi, Vinit K. andMark E.Girvin. 1999. Structural Changes Linked to Proton Translocation by Subunit c of the ATP Synthase. Vol. 402.
Sheng, Zu-Hang andQianCai. 2012. “Mitochondrial Transport in Neurons: Impact on Synaptic Homeostasis and Neurodegeneration.” Nature Reviews Neuroscience 13(2):77–93.
Tang, Y. andR. S.Zucker. 1997. “Mitochondrial Involvement in Post-Tetanic Potentiation of Synaptic Transmission.” Neuron 18(3):483–91.
Wai, Timothy andThomasLanger. 2016. “Mitochondrial Dynamics and Metabolic Regulation.” Trends in Endocrinology & Metabolism 27(2):105–17.
Wang, Wen-juan, Xiao-xingShi, Yi-wenLiu, Yi-qingHe, Ying-zhiWang, Cui-xiaYang, andFengGao. 2013. “The Mechanism Underlying the Effects of the Cell Surface ATP Synthase on the Regulation of Intracellular Acidification during Acidosis.” Journal of Cellular Biochemistry 114(7):1695–1703.
Westermann, Benedikt. 2015. “The Mitochondria–Plasma Membrane Contact Site.” Current Opinion in Cell Biology 35:1–6.
Yamamoto, Kimiko, NobutakaShimizu, SyotaroObi, ShinichiroKumagaya, YutakaTaketani, AkiraKamiya, andJojiAndo. 2007. “Involvement of Cell Surface ATP Synthase in Flow-Induced ATP Release by Vascular Endothelial Cells.” American Journal of Physiology-Heart and Circulatory Physiology 293(3):H1646–53.
Youle, R. J. andA. M.van derBliek. 2012. “Mitochondrial Fission, Fusion, and Stress.” Science 337(6098):1062–65.
Zinchuk, Vadim andOlgaZinchuk. 2008. “Quantitative Colocalization Analysis of Confocal Fluorescence Microscopy Images.” Current Protocols in Cell Biology Chapter 4:Unit 4.19.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73868-
dc.description.abstract三磷酸腺苷合成酶(ATP synthase)位於粒線體內膜上,用來生產三磷酸腺苷(ATP)供給細胞內多種反應途徑使用。先前的研究指出三磷酸腺苷合成酶出現在不同種癌細胞的細胞膜上,我們將之稱做異位表達三磷酸腺苷合成酶(ectopic ATP synthase)。異位表達三磷酸腺苷合成酶在細胞膜上面的確切作用已經在之前被證實過。因此我們想探討異位表達三磷酸腺苷合成酶在細胞內的運輸途徑。首先透過活體細胞影像,我們將綠色螢光標記在三磷酸腺苷合成酶上,在拍攝活體影像前另外染了細胞膜,而在我們所拍攝的影像中,可以觀察到隨著時間的變化,三磷酸腺苷合成酶漸漸往細胞膜移動,最後與細胞膜結合形成異位表達三磷酸腺苷合成酶。確認異位表達三磷酸腺苷合成酶由細胞質而來,進一步我們想探討異位表達三磷酸腺苷合成酶的運輸路徑。根據實驗室之前由基因集富集分析的結果,顯示異位表達三磷酸腺苷合成酶表現量高的細胞,粒線體運輸路徑和以細胞骨架當作運送介質高度參與其中,所以我們假設三磷酸腺苷合成酶以完整複合體的形式鑲嵌於粒腺體膜上,隨著粒腺體沿著細胞骨架被運輸到細胞膜上,進一步表現在細胞膜上。進一步針對前人在粒腺體上的研究,知道粒腺體分裂的情形下較易被運輸,為了證實我們的推測,分別在肺癌細胞A549跟神經母細胞瘤SK-N-BE(2)C加入抑制粒線體分裂的藥物Mdivi-1,加藥之後進行活體影像拍攝。在經由一連串的影像分析,我們觀察到在粒線體分裂被抑制後,三磷酸腺苷合成酶的移動路徑變短,移動的速率也明顯下降。進一步觀察細胞膜跟三磷酸腺苷合成酶的共定位,可以發現在抑制粒線體分裂後,膜上的異位表達三磷酸腺苷合成酶跟細胞膜的共定位隨之減少,代表異位表達三磷酸腺苷合成酶的表現量下降。根據上面結果我們推斷在粒線體融合的情況下,粒線體的運輸過程因此減少,影響了三磷酸腺苷合成酶的運輸,進一步影響異位表達三磷酸腺苷合成酶在細胞膜上的表現量。確認粒線體的型態會影響三磷酸腺苷合成酶的運送,我們再來觀察細胞骨架對三磷酸腺苷合成酶的作用。因此我們使用抑制細胞骨架據合的藥物-諾考達唑(Nocodazole),同樣用活體影像拍攝記錄下加藥後對細胞的影響,我們分析細胞影像的結果也發現在抑制細胞骨架的聚合後,三磷酸腺苷合成酶的行動能力下降許多,在共定位的分析下也可發現,膜上的異位表達三磷酸腺苷合成酶表現量也被抑制,因此我們推測細胞骨架在三磷酸腺苷合成酶的運送途徑扮演重要的角色。根據上述的實驗結果,我們推測異位表達三磷酸腺苷合成酶在細胞裡面的運送是需要透過粒線體分裂的型態,並且運送的途徑是需要藉由細胞骨架來進行移動,最後藉由粒線體與細胞膜的融合將異位表達三磷酸腺苷合成酶表現在細胞膜上。zh_TW
dc.description.abstractAdenosine triphosphate (ATP) synthase is the most commonly used as 'energy currency' of cells for all organisms. So far, several studies have shown that ATP synthase not only exists on mitochondrial inner membrane but also translocates to the plasma membrane. ATP synthase which ectopically expresses on the cell surface is known as ectopic ATP synthase (eATP synthase) and found in various cells. Our previous studies revealed that eATP synthase on plasma membrane may come from divided mitochondria which are transported along with microtubule. Here, we aim to verify this hypothesis by using the approach of time-lapse live cell image to monitor the intracellular trafficking of ATP synthase. Fluorescent protein tags, such as GFP, YFP, and mCherry, are generally used for tracing cellular components in living cells, however, most fluorescent proteins easily get photobleach which results in the dilemma under long-period monitor. Therefore, we manipulated photo-activatable-GFP (pa-GFP) which displays a 100-fold increase in green fluorescent intensity, and the narrow spectra achieved purified signal relative to GFP. In addition, through the special photoactivation characteristic, pa-GFP is a suitable material for observing the moving track of target proteins which have been excited by ~400 nm wavelength specifically rather than new synthetic target proteins. At first, we introduced the sequence of ATP5B, a subunit of ATP synthase complex, into a pa-GFP vector and transfected this recombinant construction into cancer cells for the observation of ATP synthase movement. After stimulated with 413 nm light, ATP5B-paGFP was recorded every 4 secs for 30 min. The time-lapse video showed that ATP5B-paGFP moved from the perinuclear region to the plasma membrane. Consistently, the colocalization analysis also indicated that approximately 80% ATP5B-paGFP colocalized with the cell plasma membrane labeling, Cell Mask Deep Red. To further determine whether the mitochondrial dynamic is related to ATP synthase transportation, we captured the movement of ATP5B-paGFP in cancer cells treated with Mdivi-1, an inhibitor of mitochondrial fission. The live image analysis suggested that Mdivi1 treatment reduced significantly movement distance and velocity of ATP5B-paGFP compared to control. Moreover, we also investigated whether microtubule plays the critical role in ATP synthase transportation. The results showed that the movement ability of ATP synthase was significantly slowed down after treatment with the microtubule-depolymerizing agent. In conclusion, our time-lapse imaging analysis provides evidence that mitochondria dynamic and microtubule network play important roles in ectopic ATP synthase trafficking.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:12:20Z (GMT). No. of bitstreams: 1
ntu-108-R06b43022-1.pdf: 3204158 bytes, checksum: 4aadbb87db548d48dc3d34412a899db4 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContents
中文摘要........................................................................................................................ 3
Abstract ......................................................................................................................... 5
Abbreviation ................................................................................................................. 7
Contents ........................................................................................................................ 8
Chapter 1. Introduction ............................................................................................ 11
1.1 Ectopic ATP synthase ....................................................................................... 11
1.2 Mitochondria dynamic state ............................................................................ 12
1.2.1. Overview ............................................................................................................ 12
1.2.2. Mitochondrial fission and fusion ..................................................................... 13
1.2.3 Mitochondrial transportation ............................................................................ 15
1.2.4 Microtubule related trafficking in cytosol ........................................................ 16
1.3 Trafficking of ectopic ATP synthase ............................................................... 17
1.3.1 Live cell imaging ................................................................................................ 17
1.3.2 Tracing analysis ................................................................................................. 18
1.3.3 Colocalization analysis ...................................................................................... 19
1.4 Motivation .......................................................................................................... 20
Chapter 2. Material and Method .............................................................................. 22
9
2.1 Experimental design ......................................................................................... 22
2.2 Cell culture ........................................................................................................ 22
2.3 Drug treatment .................................................................................................. 23
2.4 Construction of pATP5B-EGFP and pATP5B-PAGFP plasmid ................. 24
2.5 Construction of pCMV-HA Drp1 plasmid ..................................................... 26
2.6 Plasmid DNA purification ................................................................................ 29
2.7 Flow cytometry .................................................................................................. 30
2.8 Immunocytochemistry (ICC) ........................................................................... 31
2.9 Live imaging ...................................................................................................... 32
2.9.1 Cell culture and transfection ............................................................................. 32
2.9.2 Fluorescence probe ............................................................................................ 33
2.9.3 Confocal microscope .......................................................................................... 33
2.9.4 Tracing analysis ................................................................................................. 34
2.9.5 Quantitative Colocalization analysis ................................................................. 34
2.10 Western blot .................................................................................................... 36
Chapter 3. Results ...................................................................................................... 37
3.1 The ATP5B-paGFP highly colocalized with mitochondria. ........................... 37
3.2 ATP synthases trafficked from cytoplasm to plasma membrane. ................. 38
3.3 ATP synthases incorporated with mitochondria trafficking from cytoplasm to plasma membrane. ................................................................................................. 39
10
3.4 Inhibition of mitochondrial fission state through Mdivi-1 treatment slowed down ATP synthase movement in cell. ................................................................... 40
3.5 Inhibition mitochondrial fission state through Mdivi-1 treatment decreased ectopic ATP synthase expression. .......................................................... 41
3.6 Disruption of microtubule through Nocodazole treatment inhibited ATP synthase movement in cell. ....................................................................................... 42
3.7 Disruption of microtubule through Nocodazole treatment decreased ectopic ATP synthase expression. ............................................................................ 43
3.8 Inducing mitochondria fission state caused the higher expression level of ectopic ATP synthases in cancer cells. .................................................................... 44
Chapter 4. Discussion ................................................................................................ 46
Chapter 5. Conclusion................................................................................................ 50
References ...................................................................................................................52
dc.language.isoen
dc.subject異位表達三磷酸腺?合成?zh_TW
dc.subject粒線體運輸zh_TW
dc.subject影像分析zh_TW
dc.subject細胞骨架zh_TW
dc.subject粒線體分裂zh_TW
dc.subject活體影像zh_TW
dc.subjectATP5B-paGFPen
dc.subjectprotein traffickingen
dc.subjectmitochondria traffickingen
dc.subjectmitochondria fissionen
dc.subjectmicrotubuleen
dc.subjectlive-cell imagingen
dc.subjectEctopic ATP synthaseen
dc.title活體影像研究異位表達ATP合成酶的運輸過程zh_TW
dc.titleLive-cell Image of Ectopic ATP Synthase Traffickingen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王憶卿,李岳倫,黃宣誠,賴品光
dc.subject.keyword異位表達三磷酸腺?合成?,粒線體運輸,粒線體分裂,細胞骨架,活體影像,影像分析,zh_TW
dc.subject.keywordEctopic ATP synthase,protein trafficking,mitochondria trafficking,mitochondria fission,microtubule,live-cell imaging,ATP5B-paGFP,en
dc.relation.page75
dc.identifier.doi10.6342/NTU201903469
dc.rights.note有償授權
dc.date.accepted2019-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
Appears in Collections:分子與細胞生物學研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
3.13 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved