請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73849完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周必泰(Pi-Tai Chou) | |
| dc.contributor.author | Ta-Chun Lin | en |
| dc.contributor.author | 林大鈞 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:11:50Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-28 | |
| dc.identifier.citation | 1. Zhiyong Yang, Zhu Mao, Zongliang Xie, Yi Zhang, Siwei Liu, Juan Zhao, Jiarui Xu, Zhenguo Chi and Matthew P. Aldredb. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46, 915-1016. 2. A. Kohler and H. Bassler. Electronic Processes in Organic Semiconductors: An Introduction. John Wiley Sons 2015. 3. Lakowicz, Joseph, R. Principles of Fluorescence Spectroscopy, Third Ed. Springer Science 2006. 4. Coughlin, J. E.; Henson, Z. B.; Welch, G. C.; Bazan, G. C. Design and Synthesis of Molecular Donors for Solution-Processed High-Efficiency Organic Solar Cells. Accounts of Chemical Research 2013, 47, 257-270. 5. Komori, T.; Nakanotani, H.; Yasuda, T.; Adachi, C. Light-Emitting Organic Field- Effect Transistors Based on Highly Luminescent Single Crystals of Thiophene/Phenylene Co-Oligomers. Journal of Materials Chemistry C 2014, 2, 4918. 6. Li, Y.; Liu, T.; Liu, H.; Tian, M.-Z.; Li, Y. Self-Assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems. Accounts of Chemical Research 2014, 47, 1186-1198. 7. Vanengelenburg, S. B.; Palmer, A. E. Fluorescent Biosensors of Protein Function. Current Opinion in Chemical Biology 2008, 12, 60-65. 8. Demkowicz, S.; Rachon, J.; Daśko, M.; Kozak, W. Selected Organophosphorus Compounds with Biological Activity. Applications in Medicine. RSC Advances 2016, 6, 7101-7112. 9. Guan, X.; Zhang, K.; Huang, F.; Bazan, G. C.; Cao, Y. Amino N-Oxide Functionalized Conjugated Polymers and Their Amino Functionalized Precursors: New Cathode Interlayers for High-Performance Optoelectronic Devices. Advanced Functional Materials 2012, 22, 2846-2854. 10. Becker, A.; Hessenius, C.; Licha, K.; Ebert, B.; Sukowski, U.; Semmler, W.; Wiedenmann, B.; Grötzinger, C. Receptor-Targeted Optical Imaging of Tumors with near-Infrared Fluorescent Ligands. Nature Biotechnology 2001, 19, 327- 331. 11. Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W. Y.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q.; Sun, J. Z.; Ma, Y.; Tang, B. Z. Crystallization- Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. The Journal of Physical Chemistry C 2010, 114, 6090-6099. 12. Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Efficient up-Conversion of Triplet Excitons into a Singlet State and Its Application for Organic Light Emitting Diodes. Applied Physics Letters 2011, 98, 083302. 13. Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials. Chemical Society Reviews 2017, 46, 915-1016. 14. Xinyan Guo, Yiming Liu, Qi Chen, Dahui Zhao, and Yuguo Ma. New Bichromophoric Triplet Photosensitizer Designs and Their Application in Triplet–Triplet Annihilation Upconversion. Adv. Optical Mater. 2018, 6, 1700981. 15. Christian Reichardt. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev 1994, 94, 2319-2358. 16. Zbigniew R. Grabowski and Krystyna Rotkiewicz. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev. 2003, 103, 3899-4031. 17. Barry M. Trost. On Inventing Reactions for Atom Economy. Acc. Chem. Res. 2002, 35, 695-705. 18. A. C. Sedgwick, W.-T. Dou, J.-B. Jiao, L. Wu, G. T. Williams, A. T. A. Jenkins, S. D. Bull, J. L. Sessler, X.-P. He, and T. D. James. An ESIPT Probe for the Ratiometric Imaging of Peroxynitrite Facilitated by Binding to Aβ-Aggregates. J. Am. Chem. Soc. 2018, 140, 14267. 19. K. Tabata, T. Yamada, H. Kita, and Y. Yamamoto. Carbazole-Dibenzofuran Dyads as Metal-Free Single-Component White-Color Photoemitters. Adv. Funct. Mater. 2019, 29, 1805824. 20. Yeh, H.-C.; Wu, W.-C.; and Chen, C.-T. The colourful fluorescence from readily-synthesised 3,4-diaryl-substituted maleimide fluorophores. Chem. Commun. 2003, 3, 404-405. 21. C.-L. Chen, Y.-T. Chen, A. P. Demchenko, and P.-T. Chou. Amino proton donors in excited-state intramolecular proton-transfer reactions. Nat. Rev. Chem. 2018, 2, 131. 22. C. Calvino, A. Guha, C. Weder, and S. Schrettl. Self-Calibrating Mechanochromic Fluorescent Polymers Based on Encapsulated Excimer-Forming Dyes. Adv. Mater. 2018, 30, 1704603. 23. L. Yuan, W. Lin, K. Zheng, and S. Zhu. FRET-Based Small-Molecule Fluorescent Probes: Rational Design and Bioimaging Applications. Acc. Chem. Res. 2013, 46, 1462. 24. C. Kaufmann, W. Kim, A. Nowak-Król, Y. Hong, D. Kim, and F. Würthner. Ultrafast Exciton Delocalization, Localization, and Excimer Formation Dynamics in a Highly Defined Perylene Bisimide Quadruple π‐Stack. J. Am. Chem. Soc. 2018, 140, 4253. 25. Zhiyun Zhang, Wenxuan Song, Jianhua Su, and He Tian. Vibration-Induced Emission (VIE) of N,N′-Disubstituted-Dihydribenz [a,c]phenazines: Fundamental Understanding and Emerging Applications. Adv. Funct. Mater. 2020, 30, 1902803. 26. Andrey Belyaev, Yu-Hsuan Cheng, Zong-Ying Liu, Antti J. Karttunen, Pi-Tai Chou and Igor O. Koshevoy. A Facile Molecular Machine: Optically Triggered Counterion Migration by Charge Transfer of Linear Donor-p-Acceptor Phosphonium Fluorophores. Angew. Chem. 2019, 131, 2-12. 27. Vanusa Bezerra Pacheĉo and Puspitapallab Chaudhuri. Effects of Microhydration on the Electronic Properties of ortho Aminobenzoic Acid. J. Phys. Chem. A 2013, 117, 5675-5684. 28. Thomas Nittoli, Kevin Curran, Shabana Insaf, Martin DiGrandi, Mark Orlowski, Rajiv Chopra, Atul Agarwal, Anita Y. M. Howe, Amar Prashad, M. Brawner Floyd, Bernard Johnson, Alan Sutherland, Karen Wheless, Boris Feld, John O’Connell, Tarek S. Mansour, and Jonathan Bloom. Identification of Anthranilic Acid Derivatives as a Novel Class of Allosteric Inhibitors of Hepatitis C NS5B Polymerase. J. Med. Chem. 2007, 50, 2108-2116. 29. Ana Cristina Trindade Cursino, José Eduardo Ferreira da Costa Gardolinski, and Fernando Wypych. Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate. Journal of Colloid and Interface Science 2010, 347, 49-55. 30. S. Nie, C.G. Castillo, K.L. Bergbauer, J.F.R. Kuck, I.R. Nabiev, and N.-T. Yu. Surface-Enhanced Raman Spectra of Eye Lens Pigments. Appl. Spectrosc. 1990, 44, 571-575. 31. S. Chaskes and R. Tyndall. Pigmentation And Autofluorescence Of Cryptococcus Species After Growth On Tryptophan And Anthranilic Acid Media. Mycopathologia 1978, 64, 105-112. 32. Michael Boomhoff, Rostyslav Ukis, and Christoph Schneider. A Highly Stereocontrolled, One-Pot Approach toward Pyrrolobenzoxazinones and Pyrroloquinazolinones through a Lewis Acid-Catalyzed [3 + 2]- Cycloannulation Process. J. Org. Chem. 2015, 80, 8236-8244. 33. Yuko Fukuyama, Shunsuke Izumi, and Koichi Tanaka. 3-Hydroxy-2- Nitrobenzoic Acid as a MALDI Matrix for In-Source Decay and Evaluation of the Isomers. J. Am. Soc. Mass Spectrom. 2018, 29, 2227-2236. 34. Demeure, K., Quinton, L., Gabelica, V., and De Pauw, E. Rational selection of the optimum MALDI matrix for top-down proteomics by in-source decay. Anal. Chem. 2007, 79, 8678-8685. 35. Takayama, M. In-source decay characteristics of peptides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 420-427. 36. Sakakura, M. and Takayama, M. In-source decay and fragmentation characteristics of peptides using 5-aminosalicylic acid as a matrix in matrix- assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2010, 21, 979-988. 37. Demeure, K., Gabelica, V., and De Pauw, E.A. New advances in the understanding of the in-source decay fragmentation of peptides in MALDI- TOF-MS. J. Am. Soc. Mass Spectrom. 2010, 21, 1906-1917. 38. Asakawa, D. and Takayama, M. C-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices. J. Am. Soc. Mass Spectrom. 2011, 22, 1224-1233. 39. Nicolas Smargiasso, Loic Quinton, and Edwin De Pauw. 2-Aminobenzamide and 2-Aminobenzoic Acid as New MALDI Matrices Inducing Radical Mediated In-Source Decay of Peptides and Proteins. J. Am. Soc. Mass Spectrom. 2012, 23, 469-474. 40. Amaresh Mishra, Rajani K. Behera, Pradipta K. Behera, Bijaya K. Mishra, and Gopa B. Behera. Cyanines during the 1990s: A Review. Chem. Rev. 2000, 100, 1973-2011. 41. C. Greville Williams. XXVI.-Researches on Chinoline and its Homologues. Trans. R. Soc. Edinburg 1856, 21, 377. 42. Koraiem, A. I. M.; Girgis, M. M.; Khalil, Z. H.; and Abu El-Hamd, R. M. Electronic Absorption Spectral Studies on New Dimethine Cyanine Dyes. Dyes Pigments 1991, 15, 89. 43. Matsui, M.; Kawamura, S.; Shibata, K.Y.; and Muramatsu, H. Synthesis and Characterization of Mono-, Bis-, and Trissubstituted Pyridinium and Pyrylium Dyes. Bull. Chem. Soc. Jpn. 1992, 65, 71. 44. Lupo, D.; Prass, W.; Scheunemann, U.; Laschewsky, A.; Rings-dorf, H.; and Ledoux, I. Second-harmonic generation in Langmuir Blodgett monolayers of stilbazium salt and phenylhydrazone dyes. J. Opt. Soc. Am. B 1988, 5, 300. 45. Shirota, K.; Kajikawa, K.; Takezoe, H.; and Fukuda, A. Molecular Orientation in Mixed Monolayers of Hemicyanine and Fatty Acid at an Air/Water Interface Studied by Second Harmonic Generation. Jpn. J. App. Phys. 1990, 29, 750. 46. Cheng, L.-T.; Tam, W.; Marder, S. R.; Stiegman, A. E.; Rikken, G.; and Spangler, C. W. Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 2. A Study of Conjugation Dependences. J. Phys. Chem. 1991, 95, 10643. 47. Marder, S. R.; Beraton, D. N.; and Cheng, L.-T. Approaches for Optimizing the First Electronic Hyper polarizability of Conjugated Organic Molecules. Science 1991, 252, 103. 48. Carpenter, M. A.; Willand, C. S.; Penner, T. L.; Williams, D. J.; and Mukamel, S. Aggregation in Hemicyanine Dye Langmuir Blodgett Films: Ultraviolet- Visible Absorption and Second Harmonic Generation Studies. J. Phys. Chem. 1992, 96, 2801. 49. Spano, F. C. and Mukamel S. Cooperative nonlinear optical response of molecular aggregates: Crossover to bulk behavior. Phys. Rev. Lett. 1991, 66, 1197. 50. Huang, C. H.; Wang, K. Z.; Xu, G. X.; Zhao, X. S.; Xie, X. M.; Xu, Y.; Liu, Y. Q.; Xu, L. G.; and Li, T. K. Langmuir Film Forming and Second Harmonic Generation Properties of Lanthanide Complexes. J. Phys. Chem. 1995, 99, 14397. 51. Ashwell, G. J.; Jackson, P. D.; and Crossland, M. A. Non-centrosymmetry and second-harmonic generation in Z-type Langmuir Blodgett films. Nature 1994, 368, 438. 52. Williams, J. L. R.; Carlson, J. M.; Adel, R. E.; and Reynolds, G. A. Photochemical Transformations Of Some 4'-amino-2 styrylpyridines And Their Salts. Can. J. Chem. 1965, 43, 1345. 53. Steiner, U.; Abdel-Kader, M. H.; Fischer, P.; and Eramer, H. E. A. Photochemical Cis/Trans Isomerization of a Stilbazolium Betaine. A Protolytic/Photochemical Reaction Cycle. J. Am. Chem. Soc. 1978, 100, 3190. 54. Abdel-kader, M. H. and Steiner, U. A Molecular Reaction Cycle With a Solvatochromic Merocyanine Dye: An Experiment in Photochemistry, Kinetics, and Catalysis. J. Chem. Educ. 1983, 60, 160. 55. Ikeda, N.; Mataga, N.; Steiner, U.; and Abdel-Kader, M. H. Picosecond Laser Photolysis Studies Upon Photochemical Isomerization And Protolytic Reaction Of A Stilbazolium Betaine. Chem. Phys. Lett. 1983, 95, 66. 56. Mishra, A.; Behera, R.K.; and Behera, G.B. Ind. J. Chem., in press. 57. Mishra, A.; Behera, G. B.; Krishna, M. M. G.; and Periasamy, N. J. Lumin., in press. 58. Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev.1994, 94, 2319. 59. Buncel, E. and Rajgopal, S. Solvatochromism and Solvent Polarity Scales. Acc. Chem. Res. 1990, 23, 226. 60. L. G. S. Brooker, G. H. Keyes, R. H. Sprague, R. H. VanDyke, E. VanLare, G. VanZandt, F. L. White, H. W. J. Cressman and S. G. Dent, JR. Color and Constitution. X. Absorption of the Merocyanines. J. Am. Chem. Soc. 1951, 73, 5332. 61. Valenzeno, D. P. Photomodification Of Biological Membranes With Emphasis On Singlet Oxygen Mechanisms. Photochem. Photobiol. 1987, 47, 147. 62. Botrel, A.; LeBeuze, A.; Jacques, P.; and Strub, H. Solvatochromism of a Typical Merocyanine Dye: A Theoretical Investigation through the CNDO/ SCI Method Including Solvatation. J. Chem. Soc., Faraday Trans 2 1984, 80, 1235. 63. Jacques, P. On the Relative Contributions of Nonspecific and Specific Interactions to the Unusual Solvatochromism of a Typical Merocyanine Dye. J. Phys. Chem. 1986, 90, 5535. 64. Az Al-Ansari, I. Interaction of solvent with the ground and excited state of 2- and 4-[4-(dimethylamino)styryl]-1 alkylpyridinium iodides: an absorption and fluorescence study. Bull. Soc. Chim. Fr. 1997, 134, 593. 65. Cao, X.; Tolbert, R. W.; Mchale, J. L.; and Edwards, W. D. Theoretical Study of Solvent Effects on the Intramolecular Charge Transfer of a Hemicyanine Dye. J. Phys. Chem. A 1998, 102, 2739. 66. Wandelt, B.; Turkwitsch, P.; Stranix, B. R.; and Darling, G. D. Effect of Temperature and Viscosity on Intramolecular Charge transfer FIuorescence of a 4-p-Dimethylaminostyrylpyridinium Salt in Protic Solvents. J. Chem. Soc., Faraday Trans. 1995, 91, 4199. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73849 | - |
| dc.description.abstract | 時至今日,應用於有機發光二極體, 生醫影像, 螢光探針...等等的有機發色團 層出不窮,有系統地開發此類有機分子漸顯重要。為了符合應用上的需求,各式各 樣用來設計相對應有機發色團的策略已被研究報導。然而,在這些策略當中,以雙 重放光訊號和大斯托克斯位移為目標的分子設計概念至今仍不常見。特別是,涉及 兩種不同激發態電子能階的雙重螢光放光現象,僅能在為數不多的有機分子中進 行激發態光反應後被觀察到。而截至目前為止,光反應被統整歸納為四大類,如: 激發態雙體(Excimer formation)、激發態分子內質子轉移(ESIPT)、扭轉分子電荷轉 移(TICT)以及相對離子遷移反應。對這四類光反應機制進行基礎研究後,我們分別 合成了一系列 ESIPT 分子以及相對離子遷移分子,並且在接下來的三個章節中, 深入探討這些分子的光物理性質以及光譜動力學。 在第一章中,我們合成出一系列鄰胺苯甲酸衍生物,此類分子因為具備氨基型 分子內氫鍵,滿足 ESIPT 反應條件。因此,我們可以在部分衍生物中觀察到雙重 螢光放光訊號。然而,基於上轉換螢光光譜儀的收光範圍限制,我們無法收到直接 的螢光生命週期數據,來對此 ESIPT 行為進行動力學探討。為了善用此類鄰胺苯 甲酸衍生物,由分子結構觀點來看,這類衍生物因為具備羧酸基團和氨基團,所以 同時具有酸和鹼的兩性特質,我們應用其作為雙功能性的基質,配合基質輔助雷射 脫附/游離飛行時間式(MALDI-TOF)質譜成像技術,對小鼠腦部內的細微構造進行 顯像。 在第二章中,我們成功合成出一系列直線型 D--A 系統的甲基吡啶鹽類分子, 此類分子由於具備不同的相對陰離子,我們在低極性溶液中觀察到非典型的多重 放光(multiple emission)訊號。接著,根據其陰離子大小、陽離子本體長度以及不同 溶劑環境下的黏滯性,我們建立了一套照光誘導陰離子遷移的反應機制,用以解釋 這一系列鹽類分子的多重放光現象。 在第三章中,有鑒於甲基吡啶鹽類分子能夠在低極性溶液中進行離子遷移反 應,進而產生多重放光現象。為了拓展離子遷移反應的研究,我們另外合成了一系 列新穎的甲基吡啶鹽類分子,這些鹽類的分子結構中由於修飾上嗎啉基團,具備分 子內氫鍵。我們期望在 ESIPT 反應的誘導下進行電荷轉移(charge transfer)後觀察到 這些鹽類分子的離子遷移行為。 | zh_TW |
| dc.description.abstract | At the present time, the research related to fabricate chromophores based on the rational design at molecular level is central importance because of its applications in OLEDs, bioimaging, medicine, fluorescent probes, etc. To meet the growing demands, various strategies have been created to design the chromophores accordingly. Over the last few decades, organic chromophores displaying dual emission and large Stokes shifts still remain uncommon to date. In particular, the dual fluorescence emission is a rare photophysical phenomenon observed in very few organic chromophores in which a two- color radiative process occurs that involves two distinct excited electronic states. So far, the observation of dual fluorescence emission was linked to electronic rearrangement of an excited fluorophore, which led to two conformers with distinct emissive properties. The well-known photoreactions, resulting in dual fluorescence emission, are listed as follow: excimer formation, excited-state intramolecular proton transfer (ESIPT), twisted intramolecular charge transfer (TICT) and counterion migration. In chapter 1, a novel series of amino-type intramolecular hydrogen-bonded molecules derived from the core chromophore anthranilic acid have been synthesized to investigate the associated R-N-H···O=C proton transfer properties in the excited state. Unfortunately, the current instrumental set prohibits the further fluorescence up- conversion measurements on the emission from the normal from of compound CHO- NHAc. Under this circumstance, there are no direct fluorescence lifetime evidence to ensure their ESIPT behavior. But, even so, from the viewpoint of chemistry, these anthranilic acid derivatives are endowed with acid/base bifunctional properties and can be promised to be the candidate for dual polarity matrix which is applied in MALDI mass spectrometry. In chapter 2, we successfully developed a new series of linear D--A-type methylpyridinium salts with different lengths of a spacer and counter anions. These ionic species exhibit anomalous multiple emission in toluene and led us to propose a counterion migration mechanism induced by excited-state charge transfer in weakly polar and nonpolar solvents. In this mechanism, the dynamics depend on the size of the counterions, the length of spacer, the dipole moment of the charge separation, and the environment viscosity. In chapter 3, counterion migration of methylpyridinium fluorophores have shown abnormal multiple emission in weakly polar and nonpolar solvents. We present a new system based on the use of ESIPT to achieve efficient counterion migration without relying on the well-established donor-acceptor scheme. In an appropriately designed morpholine-based molecule with intramolecular hydrogen bonding, ESIPT process following by intramolecular charge transfer (ICT) leads to formation of a morpholinium tautomer, resulting in counterion migration from methylpyridinium to morpholinium. Thus, multiple emissions from single ESIPT-based ion migratory compound will be come true. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:11:50Z (GMT). No. of bitstreams: 1 U0001-2801202102085900.pdf: 48676811 bytes, checksum: 343d4c559b7142130bb5bd927727c7d3 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Acknowledgement ..................................................................................................... ii 摘要 ......................................................................................................................... iii Abstract.................................................................................................................... iv Contents ................................................................................................................... vi List of Figures ........................................................................................................... ix List of Tables ............................................................................................................ xx List of Schemes ...................................................................................................... xxii Abbreviations ............................................................................................................ 1 1. Introduction...........................................................................................................5 1.1. Luminescence Concepts .............................................................................................. 5 1.2. Intramolecular Charge Transfer ................................................................................... 6 1.3. Solvatochromism ........................................................................................................ 7 1.4. Dual Emission ............................................................................................................. 9 1.5. Anthranilic Acid ........................................................................................................ 11 1.5.1. Application in Pharmaceutical Industry ..................................................................................12 1.5.2. Application in Chemical Sunscreens.......................................................................................13 1.5.3. Biological and Biochemical Activities....................................................................................13 1.5.4. Applications in Organic Synthesis ..........................................................................................14 1.5.5. Applications in MALDI-ISD ..................................................................................................15 1.6. Hemicyanine Dyes .................................................................................................... 17 1.6.1 Nonlinear Optical Effects.........................................................................................................20 1.6.2 Cis-Trans Isomerization...........................................................................................................22 1.6.3 Solvatochromism of Hemicyanine Dyes..................................................................................24 1.6.4 Twisted Intramolecular Charge Transfer ..................................................................................26 Chapter 1. Probing N-H Type Excited-State Intramolecular Proton Transfer of ortho- Aminobenzoic Acid Derivatives and their application in MALDI-TOF Techniques....... 29 C1.1. Aims of this study ................................................................................................... 29 C1.2. Synthesis ................................................................................................................ 31 C1.3. Results and discussions ........................................................................................... 32 C1.3.1. Characterisation by 1H-NMR ...............................................................................................32 C1.3.2. Characterisation by Single Crystal X-ray Diffraction Analysis............................................34 C1.3.3. Photophysical Properties ....................................................................................................36 C1.3.4. Application in MALDI-TOF Mass .......................................................................................42 C1.3.5. Application in MALDI-TOF MSI ........................................................................................51 C1.4. Summary ................................................................................................................ 57 C1.5. Experimental Section .............................................................................................. 58 C1.5.1. General Information .............................................................................................................58 C1.5.2. Synthesis of Anthranilic Acid Derivatives............................................................................59 Chapter 2. Anion-Dependent Excited-State Dynamics Observed in Pyridinium Derivatives............................................................................................................ 65 C2.1. Aims of the study.................................................................................................... 65 C2.2. Synthesis ................................................................................................................ 66 C2.3. Results and discussions ........................................................................................... 67 C2.3.1. Characterisation by X-Ray Crystallography Analysis ..........................................................67 C2.3.2. Photophysical Properties ...................................................................................................68 C2.4. Summary ................................................................................................................ 84 C2.5. Experimental Section .............................................................................................. 84 C2.5.1. General Methods and Materials ...........................................................................................84 C2.5.2. Synthesis Procedures..........................................................................................................85 Chapter 3. Optically Triggered Counterion Migration from an ESIPT System.............96 C3.1. Aims of the study.................................................................................................... 96 C3.2. Synthesis ................................................................................................................ 97 C3.3. Results and discussions ........................................................................................... 98 C3.3.1. Characterisation by 1H-NMR ...............................................................................................98 C3.3.2. Characterisation by Single Crystal X-ray Diffraction Analysis............................................99 C3.3.3. Photophysical Properties ..................................................................................................100 C3.4. Future Work.......................................................................................................... 103 C3.5. Experimental Section ............................................................................................ 103 C3.5.1. General Methods and Materials .........................................................................................103 C3.5.2. Synthesis Procedures........................................................................................................104 2. Conclusion ......................................................................................................... 106 3. References ......................................................................................................... 108 4. Supporting Information ..................................................................................... 115 4.1. NMR Spectrum ....................................................................................................... 116 4.2. Crystallization Data ................................................................................................. 149 4.3. Mass Spectrum ....................................................................................................... 156 | |
| dc.language.iso | en | |
| dc.subject | 有機發色團 | zh_TW |
| dc.subject | 螢光 | zh_TW |
| dc.subject | 激發態分子內質子轉移 | zh_TW |
| dc.subject | 多重放光 | zh_TW |
| dc.subject | 相對離子遷移 | zh_TW |
| dc.subject | ESIPT | en |
| dc.subject | Organic chromophores | en |
| dc.subject | Fluorescence | en |
| dc.subject | Multiple emission | en |
| dc.subject | Counterion migration | en |
| dc.title | 系統性設計並合成具備非典型多重放光之單分子發色團 | zh_TW |
| dc.title | Strategic Design and Synthesis of Single Chromophore with Anomalous Multiple Emission | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張鎮平(Chen-Pin Chang),趙啟民(Chi-Min Chau),何美霖(Mei-Lin Ho),洪文誼(Wen-Yi Hung) | |
| dc.subject.keyword | 有機發色團,螢光,多重放光,相對離子遷移,激發態分子內質子轉移, | zh_TW |
| dc.subject.keyword | Organic chromophores,Fluorescence,Multiple emission,Counterion migration,ESIPT, | en |
| dc.relation.page | 161 | |
| dc.identifier.doi | 10.6342/NTU202100225 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2801202102085900.pdf 未授權公開取用 | 47.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
