Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73831
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平
dc.contributor.authorYi-Ying Wuen
dc.contributor.author吳乙瑩zh_TW
dc.date.accessioned2021-06-17T08:11:21Z-
dc.date.available2021-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citationC, C. T. and Joseph, S. (2015). A syntactic approach for aspect based opinion mining. In Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), pages 24–31.
Cheng, J., Dong, L., and Lapata, M. (2016). Long short-term memory-networks for machine reading. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 551–561, Austin, Texas. Association for Computational Linguistics.
Chinsha, T. and Joseph, S. (2015). A syntactic approach for aspect based opinion mining. In Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), pages 24–31. IEEE.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Ding, X., Liu, B., and Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. In Proceedings of the 2008 International Conference on Web Search and Data Mining, WSDM ’08, pages 231–240, New York, NY, USA. ACM.
Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., and Xu, K. (2014). Adaptive recursive neural network for target-dependent twitter sentiment classification. In Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2:Short papers), pages 49–54.
Dragoni, M. (2017). A three-phase approach for exploiting opinion mining in computational advertising. IEEE Intelligent Systems, 32(3):21–27.
He, R., Lee, W. S., Ng, H. T., and Dahlmeier, D. (2018). Effective attention modeling for aspect-level sentiment classification. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1121–1131, Santa Fe, New Mexico, USA. Association for Computational Linguistics.
Hemmatian, F. and Sohrabi, M. K. (2017). A survey on classification techniques for opinion mining and sentiment analysis. Artificial Intelligence Review, pages 1–51.
Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 168–177, New York, NY, USA. ACM.
Jiang, L., Yu, M., Zhou, M., Liu, X., and Zhao, T. (2011). Target-dependent twitter sentiment classification. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11,pages 151–160, Stroudsburg, PA, USA. Association for Computational Linguistics.
Jin, W. and Ho, H. H. (2009). A novel lexicalized hmm-based learning framework for web opinion mining. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages 465–472, New York, NY, USA. ACM.
Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. International Conference on Learning Representations.
Kiritchenko, S., Zhu, X., Cherry, C., and Mohammad, S. (2014). Nrc-canada-2014: Detecting aspects and sentiment in customer reviews. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 437–442.
Li, F., Han, C., Huang, M., Zhu, X., Xia, Y., Zhang, S., and Yu, H. (2010). Structure-aware review mining and summarization. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING).
Li, H. and Lu, W. (2017). Learning latent sentiment scopes for entity-level sentiment analysis. In Thirty-First AAAI Conference on Artificial Intelligence.
Li, X., Bing, L., Li, P., and Lam, W. (2019). A unified model for opinion target extraction and target sentiment prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6714–6721.
Li, X., Bing, L., Li, P., Lam, W., and Yang, Z. (2018). Aspect term extraction with history attention and selective transformation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pages 4194–4200.
Li, X. and Lam, W. (2017). Deep multi-task learning for aspect term extraction with memory interaction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2886–2892.
Lin, C. and He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM ’09, pages 375–384, New York, NY, USA. ACM.
Lin, Z., Feng, M., dos Santos, C. N., Yu, M., Xiang, B., Zhou, B., and Bengio, Y. (2017). A structured self-attentive sentence embedding. In International Conference on Learning Representations.
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1):1–167.
Liu, K., Xu, H. L., Liu, Y., and Zhao, J. (2013). Opinion target extraction using partially-supervised word alignment model. In Proceedings of the 23th International Joint Conference on Artificial Intelligence.
Liu, K., Xu, L., and Zhao, J. (2012). Opinion target extraction using word-based translation model. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12, pages 1346–1356, Stroudsburg, PA, USA. Association for Computational Linguistics.
Liu, P., Joty, S. R., and Meng, H. M. (2015). Fine-grained opinion mining with recurrent neural networks and word embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.
Luo, H., Li, T., Liu, B., Wang, B., and Unger, H. (2019). Improving aspect term extraction with bidirectional dependency tree representation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(7):1201–1212.
Ma, D., Li, S., Zhang, X., and Wang, H. (2017). Interactive attention networks for aspect-level sentiment classification. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pages 4068–4074. AAAI Press.
Mitchell, M., Aguilar, J., Wilson, T., and Van Durme, B. (2013). Open domain targeted sentiment. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1643–1654, Seattle, Washington, USA. Association for Computational Linguistics.
Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. (2018). Deep contextualized word representations. In North American Association for Computational Linguistics (NAACL).
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jime ́nez-Zafra, S. M., and Eryig ̆it, G. (2016). SemEval-2016 task 5: Aspect based sentiment analysis. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pages 19–30, San Diego, California. Association for Computational Linguistics.
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., and Androutsopoulos, I. (2015). SemEval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 486–495,Denver, Colorado. Association for Computational Linguistics.
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., and Manandhar, S. (2014). SemEval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 27–35, Dublin, Ireland. Association for Computational Linguistics.
Popescu, A.-M. and Etzioni, O. (2005). Extracting product features and opinions from reviews. In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT ’05, pages 339–346, Stroudsburg, PA, USA. Association for Computational Linguistics.
Poria, S., Cambria, E., and Gelbukh, A. (2016). Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-Based Systems, 108:42 – 49. New Avenues in Knowledge Bases for Natural Language Processing.
Qiu, G., Liu, B., Bu, J., and Chen, C. (2011). Opinion word expansion and target extraction through double propagation. Computational Linguistics, 37(1):9–27.
Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., and Gatford, M. (1994). Okapi at trec-3. pages 0–.
Song, Y., Wang, J., Jiang, T., Liu, Z., and Rao, Y.(2019). Attentional encoder network for targeted sentiment classification. ArXiv, abs/1902.09314.
Tang, D., Qin, B., Feng, X., and Liu, T. (2016). Effective LSTMs for target-dependent sentiment classification. In Proceeding of the 26th International Conference on Computational Linguistics (COLING).
Tang, G., Mu ̈ller, M., Rios, A., and Sennrich, R. (2018). Why self-attention? A targeted evaluation of neural machine translation architectures. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4263–4272.
Vinodhini, G. and Chandrasekaran, R. (2012). Sentiment analysis and opinion mining: a survey. International Journal, 2(6):282–292.
Wang, B. and Lu, W. (2018). Learning latent opinions for aspect-level sentiment classification. In Thirty-Second AAAI Conference on Artificial Intelligence.
Wang, L., Liu, K., Cao, Z., Zhao, J., and De Melo, G. (2015). Sentiment-aspect extraction based on restricted boltzmann machines. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 616–625.
Wang, W., Pan, S. J., Dahlmeier, D., and Xiao, X. (2017). Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In Thirty-First AAAI Conference on Artificial Intelligence.
Wang, Y., Huang, M., Zhao, L., et al. (2016). Attention-based lstm for aspect-level sentiment classification. In Proceedings of the 2016 conference on Empirical Methods in Natural Language Processing, pages 606–615.
Wei, C.-P., Chen, Y.-M., Yang, C.-S., and Yang, C. C. (2010). Understanding what concerns consumers: a semantic approach to product feature extraction from consumer reviews. Information Systems and e-Business Management, 8(2):149–167.
Wilson, T., Wiebe, J., and Hoffmann, P. (2005).Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT ’05, pages 347–354, Stroudsburg, PA, USA. Association for Computational Linguistics.
Xu, H., Liu, B., Shu, L., and Yu, P. S. (2018). Double embeddings and cnn-based sequence labeling for aspect extraction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
Yongyong Zhai, Yanxiang Chen, Xuegang Hu, Peipei Li, and Xindong Wu (2010). Extracting opinion features in sentiment patterns. In 2010 International Conference on Information, Networking and Automation (ICINA), volume 1, pages V1–115–V1–119.
Yu, A. W., Dohan, D., Le, Q., Luong, T., Zhao, R., and Chen, K. (2018). Fast and accurate reading comprehension by combining self-attention and convolution. In International Conference on Learning Representations.
Zhang, M., Zhang, Y., and Vo, D. T. (2015). Neural networks for open domain targeted sentiment. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 612–621.
Zhao, X., Jiang, J., Yan, H., and Li, X. (2010). Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 56–65, Cambridge, MA. Association for Computational Linguistics.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73831-
dc.description.abstract現今網路上的文字資料量越來越多,也越來越容易獲取,因此需要一個技術能妥善的總結這些文字資料,對個人來說能更輕鬆的獲取資訊,對公司來說則能從中找到改進產品或服務的方向。因此,屬性為基礎的情感分析則成為一個近期被高度關注的技術。屬性為基礎的情感分析是一個分析粒度較精細的情感分析任務,希望能辨別出在一篇文章或句子中,作者對不同屬性的情感表達。這個任務可以被分成兩個子任務:屬性詞抽取以及對特定屬性的情感分析。大部分現有的研究多朝這兩個子任務分別發展相關技術,完整的任務便能藉由結合兩個子任務的答案而獲得解答。然而,我們認為兩個子任務之間是高度相關的,用來預測而抽取出的特徵應要能相互使用。因此,我們將此任務視為序列標記問題,並設計一個類神經多任務學習的整合模型,搭配自我注意力機制以及結合傳統特徵工程的方式,以及使用了與過去多數研究不同的標記規範以提升研究成果。此外,我們也模擬了實際情境做實驗,分別是當訓練資料的領域是不同的、或者是混合的情境下,特別是當資料量比較不足的時候。最後,實驗結果顯示我們提出的方法在三個資料集上的表現都優於現今最先進的方法。zh_TW
dc.description.abstractAspect-based sentiment analysis (ABSA) is a fine-grained task aiming to identify the sentiment expression toward a specific aspect mentioned in a sentence. A complete ABSA involves two subtasks: aspects extraction and aspect sentiment classification. Most of the existing studies solve ABSA by pipelining the solution of each subtask. In contrast, in this study, we treat ABSA as a sequence labeling problem, and develop an integrated model so that the information can be shared across these two subtasks when learning the integrated model. We improve the performance by using deep multi-task learning framework with self-attention mechanism, and integrating traditional feature engineering in our proposed method. In addition, a more effective tagging scheme is employed. We also conducted experiments on mixed domain and cross domain scenario to simulate the practical situation, especially when there are insufficient training data. Experimental results over three benchmark datasets demonstrate that our method can outperform the state-of-the-art approach.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:11:21Z (GMT). No. of bitstreams: 1
ntu-108-R06725013-1.pdf: 1344267 bytes, checksum: 464fd94222cd4eaeb3b2c0537178da12 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsChapter 1 Introduction .. 1
1.1 Background .. 1
1.2 Research Motivation and Objectives .. 3
Chapter 2 Related Works .. 5
2.1 Aspect Term Extraction .. 5
2.2 Aspect Sentiment Classification .. 7
2.3 Integrated Approach for ABSA .. 9
2.4 Summary .. 12
Chapter 3 Methodology .. 13
3.1 Problem Definition .. 13
3.2 Model Description .. 13
3.3 Prediction Combination .. 20
Chapter 4 Empirical Evaluations 22
4.1 Datasets .. 22
4.2 Compared Methods .. 23
4.3 Experiment Settings .. 24
4.4 Criterion and Procedure .. 25
4.5 Results .. 25
4.6 Additional Experiments .. 27
Chapter 5 Conclusion .. 31
References .. 33
dc.language.isoen
dc.subject深度學習zh_TW
dc.subject屬性為基礎的情感分析zh_TW
dc.subject屬性詞抽取zh_TW
dc.subject情感分析zh_TW
dc.subject序列標記zh_TW
dc.subject多任務學習zh_TW
dc.subjectAspect-based sentiment analysisen
dc.subjectDeep learningen
dc.subjectMulti-task learningen
dc.subjectSequence labelingen
dc.subjectAspect sentiment classificationen
dc.subjectAspect extractionen
dc.title基於類神經多任務學習做屬性詞提取和情感分類zh_TW
dc.titleA Neural Multi-task Learning for Aspect Extraction and Sentiment Classificationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊錦生,簡立峰
dc.subject.keyword深度學習,屬性為基礎的情感分析,屬性詞抽取,情感分析,序列標記,多任務學習,zh_TW
dc.subject.keywordDeep learning,Aspect-based sentiment analysis,Aspect extraction,Aspect sentiment classification,Sequence labeling,Multi-task learning,en
dc.relation.page41
dc.identifier.doi10.6342/NTU201901941
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved