請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73823完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫進德(Jin-Der Wen) | |
| dc.contributor.author | Pei-Hsuan Wang | en |
| dc.contributor.author | 王培軒 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:11:08Z | - |
| dc.date.available | 2024-08-22 | |
| dc.date.copyright | 2019-08-22 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | Agalarov, S. C., et al. (2000). 'Structure of the S15,S6,S18-rRNA Complex: Assembly of the 30S Ribosome Central Domain.' Science 288 (5463): 107-112
Bubunenko, M., et al. (2006). '30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15.' Rna 12(7): 1229-1239. Dey, D., et al. (2014). 'Sensing of DNA conformation based on change in FRET efficiency between laser dyes.' Sensors and Actuators B: Chemical 204: 746-753. Duss, O., et al. (2018). 'Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts.' Nat Commun 9 (1): 5087. Duval, M., et al. (2013). 'Escherichia coli Ribosomal Protein S1 Unfolds Structured mRNAs Onto the Ribosome for Active Translation Initiation.' PLoS biology 11: e1001731. Ehresmann, C., et al. (1995). 'A pseudoknot is required for efficient translational initiation and regulation of the Escherichia coli rpsO gene coding for ribosomal protein S15.' Biochemistry and Cell Biology 73 (11-12): 1131-1140. Fish, K. N. (2009). 'Total Internal Reflection Fluorescence (TIRF) Microscopy.' Current Protocols in Cytometry 50(1): 12.18.11-12.18.13. Förster, T. (1948). 'Zwischenmolekulare Energiewanderung und Fluoreszenz.' Annalen der Physik 437 (1-2): 55-75. Hall, C. E. (1956). 'Method for the Observation of Macromolecules with the Electron Microscope Illustrated with Micrographs of DNA.' The Journal of Biophysical and Biochemical Cytology 2 (5): 625. Held, W. A., et al. (1974). 'Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies.' J Biol Chem 249(10): 3103-3111. Lerner, E., et al. (2018). 'Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer.' Science 359(6373): eaan1133. Li, W., et al. (2003). 'Binding interactions between the core central domain of 16S rRNA and the ribosomal protein S15 determined by molecular dynamics simulations.' Nucleic acids research 31 (2): 629-638. Marzi, S., et al. (2007). 'Structured mRNAs Regulate Translation Initiation by Binding to the Platform of the Ribosome.' Cell 130 (6): 1019-1031. Mathy, N., et al. (2004). 'Specific recognition of rpsO mRNA and 16S rRNA by Escherichia coli ribosomal protein S15 relies on both mimicry and site differentiation.' Mol Microbiol 52 (3): 661-675. Mallik, S., et al. (2018). 'Translational regulation of ribosomal protein S15 drives characteristic patterns of protein-mRNA epistasis.' Proteins: Structure, Function, and Bioinformatics 86(8): 827-832. Orr, J. W., et al. (1998). 'Protein and Mg(2+)-induced conformational changes in the S15 binding site of 16 S ribosomal RNA.' J Mol Biol 275(3): 453-464. Philippe, C., et al. (1993). 'Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site.' Proceedings of the National Academy of Sciences of the United States of America 90 (10): 4394-4398. Portier, C., et al. (1990). 'Translational control of ribosomal protein S15.' Biochim Biophys Acta 1050(1-3): 328-336. Serganov, A., et al. (2003). 'Ribosomal protein S15 represses its own translation via adaptation of an rRNA-like fold within its mRNA.' Embo j 22(8): 1898-1908. Stein, I. H., et al. (2011). 'Single-Molecule FRET Ruler Based on Rigid DNA Origami Blocks.' ChemPhysChem 12(3): 689-695. Stryer, L. and R. P. Haugland (1967). 'Energy transfer: a spectroscopic ruler.' Proceedings of the National Academy of Sciences of the United States of America 58 (2): 719-726. Zhou, R., et al. (2011). 'SSB Functions as a Sliding Platform that Migrates on DNA via Reptation.' Cell 146(2): 222-232. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73823 | - |
| dc.description.abstract | 在大腸桿菌中,rpsO所轉譯出的S15核醣蛋白是參與核醣體組裝的重要蛋白質之一。S15在過量表現的情況下會結合rpsO轉錄本5’非轉譯區 (RPSOutr) 的偽結結構 (pseudoknot structure) 使核醣體無法進入轉譯前起始階段,以自體調節 (autoregulate) 其生合成。目前對於S15蛋白與RPSOutr結合的交互作用以及對其結構所造成的影響至今仍不甚清楚。
本篇研究利用單分子螢光共振能量轉移技術 (smFRET) 觀測S15與RPSOutr之間的結合強度、動態分析,以及利用螢光分子標定在S15上,試圖獲取S15與RPSOutr結合的直接證據。研究結果發現S15會專一的與野生型的RPSOutr或有能力形成偽結的RPSOutr結合,並使偽結結構從原本的中轉移效率變成高轉移效率,意味著S15不只是單純地結合在RPSOutr上,而是結合後可能會造成RPSOutr的偽結結構更扭曲或使構型更緊密,此現象與S15結合在16S rRNA上時造成H20與H22之間的角度變小的狀況可能相似,但目前為止均沒有相關研究證實S15會改變RPSOutr的結構,因此我們假設S15亦可以對RPSOutr造成類似的作用,未來也希望可以釐清S15對RPSOutr是否具有此相似的影響。 | zh_TW |
| dc.description.abstract | In Escherichia coli, ribosomal protein S15, encoded by rpsO, is one of the critical components in ribosome assembling. When S15 is over-expressed in the cell, it would inhibit its expression by binding the pseudoknot structure of rpsO transcript at the 5’ untranslated region (RPSOutr), and form an obstacle that stalls the ribosome at pre-initiation state, a mechanism called “autoregulation”. However, the mechanism of interactions between S15 and RPSOutr as well as the influence to the structure is still unclear.
This study attempts to observe the binding strength, dynamics between S15 and RPSOutr with smFRET, and to provide the direct evidence of S15 binding RPSOutr by labeling fluorescence dye on S15. In this thesis, we have investigated the interactions between S15 and RPSOutr by Förster resonance energy transfer at single molecule level (smFRET). We identfied that S15 specifically binds the wild-type RPSOutr, or the RPSOutr mutant that is capable of forming pseudoknot structure, causing the pseudoknot structure to shift from middle FRET to high FRET. This implies that S15 not only binds RPSOutr, but also results a more distorted pseudoknot structure. We hypothesize that this phenomenon resembles the decrease of angle between H20 and H22 on 16S rRNA after S15 binding, therefore, we will clarify if S15 possess similar effect to RPSOutr in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:11:08Z (GMT). No. of bitstreams: 1 ntu-108-R06b43028-1.pdf: 13713288 bytes, checksum: 7c1468a6ee44738c9d546d6403b4a2e3 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 iii ABSTRACT iv 圖目錄 vii 第一章 導論 1 1.1 rpsO 1 1.2 S15蛋白 1 1.3 單分子技術 2 1.4 單分子技術應用於rpsO的研究 3 1.5 螢光共振能量轉移 3 1.6 FRET應用於rpsO的前人研究 4 1.7 研究動機 5 第二章 材料與方法 6 2.1 材料 6 2.2 方法 15 第三章 結果 24 3.1 核醣蛋白S15純化 24 3.2 DNA探針與RNA黏合反應 25 3.3 測量RPSOutr之雙髮夾及偽結結構的FRET效率 26 3.4 S15對RPSOutr之影響 29 3.5 S15-Cy5與RPSOutr之間的互動 30 3.6 S15-Cy3及S15-Cy5活性測試 30 3.7 S15以Anti-His IgG:Biotin固定並與RPSOutr之間的互動 31 3.8 S15結合強度測試 31 第四章 討論 33 4.1 RPSOutr的兩種不同結構對S15結合的影響 33 4.2 S15對偽結結構的影響 34 4.3 S15純化之純度探討 34 4.4 螢光標記對S15活性的影響 35 4.5 S15結合強度 35 4.6 未來展望 36 參考文獻 37 圖1:16S rRNA之three helix junction在加入S15後的影響示意圖 40 圖2:pS15WT-s載體構築示意圖及RPSOutr序列示意圖 41 圖3:RPSOutr的構型變化與修飾有螢光分子之DNA探針的黏合設計 42 圖4:smFRET實驗操作示意圖 43 圖5:確認樣本經第一次通過His Trap FF crude管柱的S15純化情形 44 圖6:確認Enterokinase切除His-tag的情形 45 圖7:確認樣本經第二次通過His Trap FF crude管柱的S15純化情形 46 圖8:本研究純化之S15純度確認 47 圖9:S15蛋白進行 CyeDye maleimide 標記實驗結果 48 圖10:DNA探針與RNA黏合反應 - 以2.5% agarose gel進行膠體電泳分析 49 圖11:DNA探針與RNA黏合反應 - 以2.5% agarose gel進行膠體電泳分析 50 圖12:RPSOutr序列設計與探針黏合配置示意圖、FRET-分子螢光強度關係圖、FRET-效率直方圖與FRET-時間軌跡圖 51 圖13:mS2L序列設計與探針黏合配置示意圖、FRET-分子螢光強度關係圖、FRET-效率直方圖與FRET-時間軌跡圖 52 圖14:mAC序列設計與探針黏合配置示意圖、FRET-分子螢光強度關係圖、FRET-效率直方圖與FRET-時間軌跡圖 53 圖15:dAC序列設計與探針黏合配置示意圖、FRET-分子螢光強度關係圖、FRET-效率直方圖與FRET-時間軌跡圖 54 圖16:不同濃度S15蛋白對RNA的影響 55 圖17:不同RNA轉錄本於10nM S15蛋白下的FRET-時間軌跡圖 57 圖18:Cy3及Cy5位置對調的FRET實驗 58 圖19:RPSOutr對S15-Cy5之結合測試 59 圖20:測試S15-Cy5活性 60 圖21:將S15蛋白固定於玻片上捕捉RNA 61 圖22:S15對不同RNA的結合強度測試 63 圖23:S15對不同RNA結合強度測試的統計圖 65 圖24:S15對不同RNA結合強度測試疊圖 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 核醣蛋白S15 | zh_TW |
| dc.subject | rpsO | zh_TW |
| dc.subject | autoregulation | zh_TW |
| dc.subject | 單分子 | zh_TW |
| dc.subject | 螢光共振能量轉移 | zh_TW |
| dc.subject | single molecule | en |
| dc.subject | rpsO | en |
| dc.subject | autoregulation | en |
| dc.subject | Ribosomal protein S15 | en |
| dc.subject | FRET | en |
| dc.title | 以單分子螢光共振能量轉移技術觀測rpsO 5’非轉譯區與S15之間的交互作用 | zh_TW |
| dc.title | Observing interactions between the ribosomal protein S15 and rpsO 5’UTR by single molecule FRET | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李弘文(Hung-Wen Li),李以仁(I-Ren Lee) | |
| dc.subject.keyword | 核醣蛋白S15,rpsO,autoregulation,單分子,螢光共振能量轉移, | zh_TW |
| dc.subject.keyword | Ribosomal protein S15,rpsO,autoregulation,single molecule,FRET, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU201903714 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 13.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
