請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73819完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江介宏(Jie-Hong Jiang) | |
| dc.contributor.author | Chia-Chih Chi | en |
| dc.contributor.author | 綦家志 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:11:02Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | [1] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. P´ etrot. Ternary Neural Networks for Resource-Efficient AI Applications. arXiv e-print, arXiv:1609.00222, 2016.
[2] C. Chi, J. Jiang. Logic Synthesis of Binarized Neural Networks for Efficient Circuit Implemen-tation. In Proc. International Conference on Computer Aided Design (ICCAD), 2018. [3] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. arXiv e-print, arXiv:1602.02830, 2016. [4] N. Fraser, Y. Umuroglu, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers. Scaling Binarized Neural Networks on Reconfigurable Logic. arXiv e-print, arXiv:1701.03400, 2017. [5] T. Fujii, S. Sato, H. Nakahara. A Threshold Neuron Pruning for a Binarized Deep Neural Network on an FPGA. In IEICE Transactions on Information and Systems, 101-D(2): 376-386, 2018. [6] H. Gabow, R. Tarjan. Faster Scaling Algorithms for General Graph Matching Problems In Journal of the ACM (JACM), 38(4): 815-853, 1991. [7] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, MIT Press, 2016. [8] S. Han, H. Mao, and W. Dally. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. In Proc. International Conference on Learning Representations (ICLR), 2016. [9] P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2): 100-107, 1968. [10] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2015. [11] M. Horowitz. Computing’s energy problem (and what we can do about it). In Proc. International Solid-State Circuits Conference (ISSCC), pp. 10-14, 2014. [12] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv e-print, arXiv:1704.04861, 2017. [13] I. Hubara. Code for Binarized Neural Network Implemented by PyTorch, GitHub repository, https://github.com/itayhubara/BinaryNet.pytorch, 2017. [14] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. MS thesis, University of Toronto, https://www.cs.toronto.edu/ ~ kriz/cifar.html, 2009. [15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11): 2278-2324, 1998. [16] Y. LeCun, C. Cortes, and C. Burges. THE MNIST DATABASE of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998. [17] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Graf. Pruning Filters for Efficient ConvNets. In Proc. International Conference on Learning Representations (ICLR), pp. 1-13, 2017. [18] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning Efficient Convolutional Networks Through Network Slimming. In Proc. IEEE International Conference on Computer Vision (ICCV), pp. 2755-2763, 2017. [19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks. arXiv e-print, arXiv:1603.05279, 2016. [20] R. Rudell. Logic Synthesis for VLSI Design. PhD dissertation, University of California, Berkeley, 1989. [21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and S. Reed. Going Deeper with Convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9, 2015. [22] Y. Umuroglu, N. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. In Proc. International Symposium on Field-Programmable Gate Arrays (FPGA), pp. 65-74, 2017. [23] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning Structured Sparsity in Deep Neural Networks. In Proc. Advances in Neural Information Processing Systems (NIPS), pp. 2074-2082, 2016 [24] H. Yonekawa and H. Nakahara. On-Chip Memory Based Binarized Convolutional Deep Neural Network Applying Batch Normalization Free Technique on an FPGA. In Proc. International Parallel and Distributed Processing Symposium Workshops (IPDPS), pp. 98-105, 2017. [25] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and Z. Zhang. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proc. International Symposium on Field-Programmable Gate Arrays (FPGA), pp. 15-24, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73819 | - |
| dc.description.abstract | 類神經網路是深度學習技術中的核心。因此,如何有效率地在硬體上佈署神經網路對深度學習的實際應用影響深遠。在類神經網路中,二值化神經網路是最近被提出的一種特殊的神經網路,其中每個神經權重的輸出都被二值化成{-1,+1}(也可在硬體中編碼成{0,1})。不同於一般浮點數的模型需要乘法器,二值化神經網路可以改使用互斥或電路來實現,因而特別適合硬體實現。在此神經網路的研究上,前人主要將資料與權重都讀入神經網路處理單位,這樣的方法雖然使用的硬體資源量較少,卻需要更多量的記憶體讀取,也可能導致能量與效能上的劣勢。在這份研究中,我們將二值化神經網路視為邏輯電路,探討其在硬體資源上的邏輯合成優化,並將此優化問題定義為神經網路剪枝與矩陣覆蓋問題。在神經網路剪枝方面,根據前人的成果我們提出了三種策略與其評量方式;在矩陣覆蓋上面,我們提出了一有效率的演算法以減少繞線成本。藉由融合這兩種方法,實驗結果證實我們可以有效地減少使用的硬體資源。在二值化神經網路的硬體實現方面,相對於原先的神經網路處理單位方法,我們提供了一種可以並行的替代方案,以達成在面積、效能、功率上的取捨。 | zh_TW |
| dc.description.abstract | Neural networks (NNs) are key to deep learning systems. Their efficient hardware implementation is crucial to applications at the edge. Binarized NNs (BNNs), where the weights and output of a neuron are of binary values {-1, +1} (or encoded in {0, 1}), have been proposed recently. As no multiplier required, binarized neural networks are particularly attractive and suitable for hardware realization. Most prior NN synthesis methods target on hardware architectures with neural processing elements (NPEs), where the weights of a neuron are loaded and the output of the neuron is computed. The load-and-compute method, though area efficient, requires expensive memory access, which deteriorates energy and performance efficiency. In this work we aim at synthesizing BNN layers into dedicated logic circuits. We formulate the corresponding model pruning problem and matrix covering problem to reduce the area and routing cost of BNNs. For model pruning, we propose three strategies according to previous works and an evaluation topology to prune model
at training stage. For matrix covering, we propose a scalable algorithm to reduce the area and routing cost of BNNs. By combining these two methods, experimental results justify the effectiveness of the method in terms of area and net savings on FPGA implementation. Our method provides an alternative implementation of BNNs, and can be applied in combination with NPE-based implementation for area, speed, and power tradeoffs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:11:02Z (GMT). No. of bitstreams: 1 ntu-108-R06943102-1.pdf: 1596074 bytes, checksum: 993cc446c9b3dd4f92025a1e9d7c896d (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Acknowledgements i
Chinese Abstract ii Abstract iii List of Figures vii List of Tables viii 1 Introduction 1 2 Backgrounds 5 2.1 Binarized Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Parameterized Implementation vs. Direct Logic Implementation . . . 7 2.3 Interconnect Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Problem Formulation 10 3.1 Matrrix Covering Problem . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Model Pruning Problem . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Matrix Covering Algorithm 17 4.1 Row Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Rectangle Merging and Splitting . . . . . . . . . . . . . . . . . . . . . 19 4.3 Row-Constrained Submatrix Covering . . . . . . . . . . . . . . . . . . 20 4.4 Matrix Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Pruning Strategies 28 5.1 Minimum Weight Value Entry Pruning . . . . . . . . . . . . . . . . . 29 5.2 Minimum Weight Value Neuron Pruning . . . . . . . . . . . . . . . . 30 5.3 Minimum Gamma Threshold Neuron Pruning . . . . . . . . . . . . . 30 6 Experimental Results 33 6.1 Synthesis of BNN for MNIST Dataset . . . . . . . . . . . . . . . . . . 34 6.2 Synthesis of BNN for CIFAR-10 Dataset . . . . . . . . . . . . . . . . 35 6.3 Pruning Strategies of BNN . . . . . . . . . . . . . . . . . . . . . . . . 38 6.4 Combining Matrix Covering with Pruning . . . . . . . . . . . . . . . 40 6.5 Implementation Statistics . . . . . . . . . . . . . . . . . . . . . . . . 41 7 Conclusions 47 References 49 | |
| dc.language.iso | en | |
| dc.subject | 邏輯合成 | zh_TW |
| dc.subject | 二值化神經網路 | zh_TW |
| dc.subject | 矩陣覆蓋 | zh_TW |
| dc.subject | 神經網路剪枝 | zh_TW |
| dc.subject | network pruning | en |
| dc.subject | logic synthesis | en |
| dc.subject | matrix covering | en |
| dc.subject | binarized neural network | en |
| dc.title | 二值化神經網路之邏輯合成 | zh_TW |
| dc.title | Logic Synthesis of Binarized Neural Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊家驤,洪士灝,李濬屹 | |
| dc.subject.keyword | 二值化神經網路,邏輯合成,矩陣覆蓋,神經網路剪枝, | zh_TW |
| dc.subject.keyword | binarized neural network,logic synthesis,matrix covering,network pruning, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201903097 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
