請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳恒榆(Heng-Yu Chen) | |
| dc.contributor.author | Lung-Chuan Chen | en |
| dc.contributor.author | 陳隆全 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:10:57Z | - |
| dc.date.available | 2021-02-20 | |
| dc.date.copyright | 2021-02-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-17 | |
| dc.identifier.citation | [1] R. Andriambololona, T. Ranaivoson, and R. Hanitriarivo. Definitions of complex order integrals and derivatives using operator approach. arXiv eprints, page arXiv:1209.0400, Aug. 2012. [2] T. Bailey, M. Eastwood, and A. Gover. Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math., 24(4):1191–1217, 12 1994. [3] M. BaldoniSilva and A. Knapp. Intertwining operators and unitary representations, i. Journal of Functional Analysis, 82(1):151 – 236, 1989. [4] T. Basile, X. Bekaert, and N. Boulanger. Mixedsymmetry fields in de Sitter space: a group theoretical glance. JHEP, 05:081, 2017. [5] X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight. Quartic AdS Interactions in HigherSpin Gravity from Conformal Field Theory. JHEP, 11:149, 2015. [6] X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight. Towards holographic higherspin interactions: Fourpoint functions and higherspin exchange. JHEP, 03:170, 2015. [7] X. Bekaert and E. D. Skvortsov. Elementary particles with continuous spin. Int. J. Mod. Phys. A, 32(23n24):1730019, 2017. [8] S. CaronHuot. Analyticity in spin in conformal theories. Journal of High Energy Physics, 2017(9), Sep 2017. [9] L. Cornalba, M. S. Costa, and J. Penedones. Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion. JHEP, 09:037, 2007. [10] L. Cornalba, M. S. Costa, J. Penedones, and R. Schiappa. Eikonal Approximation in AdS/CFT: From Shock Waves to FourPoint Functions. JHEP, 08:019, 2007. [11] M. S. Costa, V. Gonçalves, and J. Penedones. Spinning AdS Propagators. JHEP, 09:064, 2014. [12] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov. Spinning Conformal Correlators. JHEP, 11:071, 2011. [13] P. A. M. Dirac. Wave equations in conformal space. Annals Math., 37:429–442, 1936. [14] V. Dobrev, G. Mack, V. Petkova, S. Petrova, and I. Todorov. Harmonic Analysis on the nDimensional Lorentz Group and Its Application to Conformal Quantum volume 63. 1977. [15] V. K. Dobrev, V. B. Petkova, S. G. Petrova, and I. T. Todorov. Dynamical derivation of vacuum operatorproduct expansion in euclidean conformal quantum field theory. Phys. Rev. D, 13:887–912, Feb 1976. [16] F. Dolan and H. Osborn. Conformal partial waves and the operator product expansion. Nuclear Physics B, 678(12): 491–507, Feb 2004. [17] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli. Correlation functions in the CFT(d) / AdS(d+1) correspondence. Nucl. Phys., B546:96–118, 1999. [18] M. Isachenkov and V. Schomerus. Superintegrability of ddimensional Conformal Blocks. Phys. Rev. Lett., 117(7):071602, 2016. [19] M. Isachenkov and V. Schomerus. Integrability of conformal blocks. Part I. CalogeroSutherland scattering theory. JHEP, 07:180, 2018. [20] D. Karateev, P. Kravchuk, and D. SimmonsDuffin. Harmonic Analysis and Mean Field Theory. 2018. [21] D. Karateev, P. Kravchuk, and D. SimmonsDuffin. Weight Shifting Operators and Conformal Blocks. JHEP, 02:081, 2018. [22] A. Knapp and E. Stein. Intertwining operators for semisimple groups ii. Inventiones mathematicae, 60:9–84, 02 1980. [23] A. W. Knapp and E. M. Stein. Interwining operators for semisimple groups. Annals of Mathematics, 93(3):489–578, 1971. [24] P. Kravchuk and D. SimmonsDuffin. Lightray operators in conformal field theory. JHEP, 11:102, 2018. [,236(2018)]. [25] D. LeeHilliker. On the infinite multinomial expansion, ii. The Fibonacci Quarterly, 14(5):3, 1976. [26] T. Leonhardt, R. Manvelyan, and W. Rühl. The group approach to ads space propagators. Nuclear Physics B, 667(3):413 – 434, 2003. [27] H. Liu and A. A. Tseytlin. Fourpoint functions in the cftads correspondence. Physical Review D, 59(8), Mar 1999. [28] J. Liu, E. Perlmutter, V. Rosenhaus, and D. SimmonsDuffin. ddimensional SYK, AdS Loops, and 6j Symbols. 2018. [29] J. Maldacena. International Journal of Theoretical Physics, 38(4):1113–1133, 1999. [30] A. Mikhailov. Notes on higher spin symmetries. 1 2002. [31] A. Neamaty, M. Yadollahzadeh, and R. Darzi. On fractional differential equation with complex order. Progress in Fractional Differentiation and Applications, 1:223– 227, 07 2015. [32] D. Pappadopulo, S. Rychkov, J. Espin, and R. Rattazzi. OPE Convergence in Conformal Field Theory. Phys. Rev., D86:105043, 2012. [33] J. Penedones. High Energy Scattering in the AdS/CFT Correspondence. PhD thesis, Porto U., 2007. [34] D. Poland, S. Rychkov, and A. Vichi. The conformal bootstrap: Theory, numerical techniques, and applications. Reviews of Modern Physics, 91(1), Jan 2019. [35] S. Rychkov. Epfl lectures on conformal field theory in d ≥ 3 dimensions. SpringerBriefs in Physics, 2017. [36] V. Schomerus, E. Sobko, and M. Isachenkov. Harmony of Spinning Conformal Blocks. JHEP, 03:085, 2017. [37] D. SimmonsDuffin. Projectors, shadows, and conformal blocks. Journal of High Energy Physics, 2014(4):146, 2014. [38] D. SimmonsDuffin, D. Stanford, and E. Witten. A spacetime derivation of the Lorentzian OPE inversion formula. JHEP, 07:085, 2018. [39] C. Sleight. Metriclike Methods in Higher Spin Holography. PoS, Modave2016:003, 2017. [40] C. Sleight and M. Taronna. Higher spin interactions from conformal field theory: The complete cubic couplings. Physical Review Letters, 116(18), May 2016. [41] C. Sleight and M. Taronna. Spinning witten diagrams. Journal of High Energy Physics, 2017(6), Jun 2017. [42] L. M. Sokołowski. The bizarre antide Sitter spacetime. Int. J. Geom. Meth. Mod. Phys., 13(09):1630016, 2016. [43] H. Sugumaran, R. Ibrahim, and K. Kanagarajan. On ψhilfer fractional differential equation with complex order. Universal Journal of Mathematics and Applications, 1:33–38, 03 2018. [44] M. Taronna. Higherspin interactions: threepoint functions and beyond. 2012. [45] E. Witten. Antide Sitter space and holography. Adv. Theor. Math. Phys., 2:253–291, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73816 | - |
| dc.description.abstract | 在本論文中,我們將歐幾里得情景下的鑲嵌形式(embedding formalism)拓展至勞倫茲情景以描述勞倫茲反德西特空間下的對稱無跡張量。利用此形式,我們藉由兩由塊到邊界傳播子來建立諧和函數。經由此方式所建構的諧和函數可被表示成能被陰影轉換(shadow transform)與自旋陰影轉換(spin-shadow transform)所聯繫的由塊至塊傳播子的線性組合。此外,我們也建構了在勞倫茲情景下傳遞帶質量自旋場的由塊至塊傳播子的分裂表示(split representation)。在這表示中,該傳播子被表示成諧和函數的線性組合。作為初步應用,我們運用該傳播子計算描述任意純量一次運算子(primary operator)間的四點樹狀維騰圖(Witten diagram)。該計算結果可表示成共形部分波的形式,意指其可表示成兩個三點相關函數的內積積分。 | zh_TW |
| dc.description.abstract | In this work, we extend the embedding formalism developed in Euclidean signature to Lorentzian case to describe the symmetric traceless tensors in Lorentzian Anti-de sitter space. Using this formalism, we construct the harmonic function by writing it as an integral over the boundary of the product of two bulk-to-boundary propagators. The harmonic functions constructed in this way are shown to be the linear combination of bulk-to-bulk propagators which are related to each other by the so-called shadow transform and spin-shadow transform. Furthermore, We developed the split representation of the bulk-to-bulk propagators of massive spinning fields in Lorentzian signature, the propagators are expressed as a linear combination of harmonic functions. As a application, we computed the tree-level four-point Witten diagram describing spin J exchange between scalar primaries of arbitrary dimension. The Witten diagrams eventually could be related to the conformal partial wave, which is defined as the integral of the product of two three-point functions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:10:57Z (GMT). No. of bitstreams: 1 U0001-2801202122393200.pdf: 28351952 bytes, checksum: c2147817986d08ae3878ee4cc22ff4d9 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Euclidean AdS propagators and split representation 5 2.1 Embedding formalism . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Euclidean AdS propagators . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Euclidean AdS Split Representation . . . . . . . . . . . . . . . . . . 11 Chapter 3 Representation theory of conformal group 15 3.1 Representation theory of conformal group in Euclidean signature . . 15 3.2 Representation theory of conformal group in Lorentzian signature and Weyl reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 4 Lorentzian AdS harmonic function 21 4.1 Construction of Lorentzian AdS harmonic function . . . . . . . . . . 23 4.2 Orthogonality of Lorentzian harmonic function . . . . . . . . . . . . 36 4.3 Completeness relation and split representation . . . . . . . . . . . . . 46 Chapter 5 The computation of Witten diagrams 49 5.1 Threepoint Witten diagrams . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Fourpoint Witten diagrams . . . . . . . . . . . . . . . . . . . . . . 55 Chapter 6 Conclusion 63 References 65 Appendix A — Conformal P integral in Lorentzian space 71 Appendix B — Conformal Z integral in Lorentzian space 75 Appendix C — The Derivation of multinomial theorem for noninteger power 79 | |
| dc.language.iso | en | |
| dc.subject | 分裂表示 | zh_TW |
| dc.subject | 反德西特/共形場論對偶 | zh_TW |
| dc.subject | 鑲嵌形式 | zh_TW |
| dc.subject | 自旋傳播子 | zh_TW |
| dc.subject | 維騰圖 | zh_TW |
| dc.subject | Split Representation | en |
| dc.subject | embedding formalism | en |
| dc.subject | AdS/CFT | en |
| dc.subject | Spinning AdS propagator | en |
| dc.subject | Witten diagram | en |
| dc.title | 勞侖茲反德西特空間中之自旋傳播子 | zh_TW |
| dc.title | Spinng AdS propagators in Lorentzian Anti-de Sitter space | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賀培銘(Pei-Ming Ho),黃宇廷(Yu-tin Huang) | |
| dc.subject.keyword | 反德西特/共形場論對偶,分裂表示,維騰圖,自旋傳播子,鑲嵌形式, | zh_TW |
| dc.subject.keyword | AdS/CFT,Split Representation,Witten diagram,Spinning AdS propagator,embedding formalism, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU202100241 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2801202122393200.pdf 未授權公開取用 | 27.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
