請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73788完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹恆偉 | |
| dc.contributor.author | Jian-Liang Lin | en |
| dc.contributor.author | 林建良 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:10:16Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | [1] H. Gharavi and R. Ghafurian, “Smart Grid: The Electric Energy System of the Future,” Proceedings of the IEEE, vol. 99, no. 6, pp. 917-921, Jun. 2011.
[2] S. Galli, A. Scaglione, and Z. Wang, “For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid,” Proceedings of the IEEE, vol. 99, no. 6, pp. 998-1027, Jun. 2011. [3] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke, “A Survey on Smart Grid Potential Applications and Communication Requirements,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 28-42, Feb. 2013. [4] K. M. Rabie and E. Alsusae, “On Improving Communication Robustness in PLC Systems for More Reliable Smart Grid Applications,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2746-2756, Nov. 2015. [5] M. Erol-Kantarci and H. T. Mouftah, “Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 179-197, Q1 2015. [6] M. Nassar, J. Lin, Y. Mortazavi, A. Dabak, I. H. Kim, and B. L. Evans, “Local Utility Power Line Communications in the 3–500 kHz Band: Channel Impairments, Noise, and Standards,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 116-127, Sept. 2012. [7] A. A. Amarsingh, H. A. Latchman, and D. Yang, “Narrowband Power Line Communications: Enabling the Smart Grid,” IEEE Potentials, vol. 33, no. 1, pp. 16-21, Jan. 2014. [8] Standard for Power Line Communications for Internet of Things Applications, IEEE Std P1901.3, Dec. 2017. [9] T. Kim, I. H. Kim, Y. Sun, and Z. Jin, “Physical Layer and Medium Access Control Design in Energy Efficient Sensor Networks: An Overview,” IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp. 2-15, Feb. 2015. [10] H. A. Suraweera and J. Armstrong, “Noise bucket effect for impulse noise in OFDM,” Electronics Letters, vol. 40, no. 18, pp. 1156-1157, Sept. 2004. [11] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in broad-band powerline communications,” IEEE Transactions on Electromagnetic Compatibility, vol. 44, no. 1, pp. 249-258, Feb. 2002. [12] IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line Communications for Smart Grid Applications, IEEE Std 1901.2-2013, Dec. 2013. [13] S. Lin and D. J. Costello, Error Control Coding, 2nd ed., Pearson Education, Inc., 2004. [14] S. Haykin, Communication Systems, 4th ed., John Wiley & Sons, Inc., 2000. [15] T. D. Chiueh, P. Y. Tsai, and I. W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications, 2nd ed., John Wiley & Sons, Inc., 2012. [16] M. Zimmermann and K. Dostert, “A multipath model for the powerline channel,” IEEE Transactions on Communications, vol. 50, no. 4, pp. 553-559, Apr. 2002. [17] W. Gardner, “Measurement of spectral correlation,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 5, pp. 1111-1123, Oct. 1986. [18] M. Katayama, T. Yamazato, and H. Okada, “A mathematical model of noise in narrowband power line communication systems,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1267-1276, Jul. 2006. [19] M. Nassar, A. Dabak, I. H. Kim, T. Pande, and B. L. Evans, “Cyclostationary noise modeling in narrowband powerline communication for Smart Grid applications,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3089-3092, Mar. 2012. [20] O. A. Y. Ojeda and J. Grajal, Adaptive-FRESH Filtering, InTech, 2011. [21] W. A. Gardner, “Cyclic Wiener filtering: theory and method,” IEEE Transactions on Communications, vol. 41, no. 1, pp. 151-163, Jan. 1993. [22] S. Haykin, Adaptive Filter Theory, 5th ed., Pearson Education, Inc., 2013. [23] T. Hirakawa, M. Fujii, M. Itami, and K. Itoh, “A Study on Iterative Impulse Noise Reduction in OFDM Signal by Recovering Time Domain Samples,” in Proc. 2006 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), pp. 325-330, Mar. 2006. [24] S. V. Zhidkov, “Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers,” IEEE Transactions on Communications, vol. 56, no. 1, pp. 5-9, Jan. 2008. [25] J. Tian, H. Guo, H. Hu, and H. H. Chen, “Frequency-Shift Filtering for OFDM Systems and Its Performance Analysis,” IEEE Systems Journal, vol. 5, no. 3, pp. 314-320, Sept. 2011. [26] N. Shlezinger and R. Dabora, “Frequency-Shift Filtering for OFDM Signal Recovery in Narrowband Power Line Communications,” IEEE Transactions on Communications, vol. 62, no. 4, pp. 1283-1295, Apr. 2014. [27] 全國法規資料庫. (民國106年06月12日). 電業供電電壓及頻率標準. [Online]. Available: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0030017 [28] O. A. Y. Ojeda and J. Grajal, “Adaptive-FRESH Filters for Compensation of Cycle-Frequency Errors,” IEEE Transactions on Signal Processing, vol. 58, no. 1, pp. 1-10, Jan. 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73788 | - |
| dc.description.abstract | 電力線原始設計為傳輸電力,並非用於信息傳輸,而電力線通道內含有許多電力設備,其內部具有切換式功能之電子零件,運作時會產生高能量的脈衝雜訊(impulsive noise),若作為通訊媒介使用,脈衝雜訊將嚴重影響整個系統的資料傳輸效能。根據研究,具有循環穩態(cyclostationary)特性的週期性脈衝雜訊是窄頻電力線通道中最具威脅性的干擾,而且其能量通常是背景雜訊的數十倍以上。
本論文參考IEEE P1901.2標準之實體層規範為模擬平台,提出一強健性接收機架構,使用頻移濾波器(frequency shift filter, FRESH filter)估計循環穩態脈衝雜訊並將其消除,並且利用正交分頻多工(orthogonal frequency-division multiplexing, OFDM)訊號具有循環字首(cyclic prefix, CP)所導致的循環穩態特性,將受到脈衝雜訊干擾的接收訊號重建回來。然而,在脈衝雜訊的循環頻率(cyclic frequency)並非已知且固定情況下,循環頻率誤差將使頻移濾波器之效能大幅降低,故本論文也針對此問題提出一具循環頻率誤差補償之可適性頻移濾波演算法。軟體模擬結果顯示,本論文提出之演算法可有效估計循環頻率的變異並加以補償,再藉由消除循環穩態脈衝雜訊,使系統效能大幅改善。 | zh_TW |
| dc.description.abstract | The power line is originally designed for power transmission instead of communication. The power line channel contains many power devices. The electronic components with switching functions can easily introduce high energy impulsive noise. Used as a communication system, such impulsive noise can seriously degrade the data transmission efficiency of the entire system. According to the research, the periodic impulsive noise with cyclostationary characteristic is the most threatening interference in narrowband power line channel, and its energy is usually dozens of times higher than background noise.
In this thesis, we refer to the physical layer specification of IEEE P1901.2 standard as the simulation platform and propose a robust receiver architecture for narrowband power line communication. The frequency shift filter (FRESH filter) is used to estimate the cyclostationary impulsive noise and eliminate it. The fact that an orthogonal frequency-division multiplexing (OFDM) signal has cyclostationary characteristics due to the cyclic prefix (CP) can be used to reconstruct the received signal interfered by the impulsive noise. However, the cyclic frequency of impulsive noise is not a constant, and such cyclic frequency error can greatly degrade the performance of the FRESH filter. Therefore, we also propose an adaptive FRESH filter algorithm for cyclic frequency error compensation in this thesis. The simulation results show that the algorithm proposed by us can effectively estimate and compensate the cyclic frequency error, eliminate the cyclostationary impulsive noise, and hence improve the system performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:10:16Z (GMT). No. of bitstreams: 1 ntu-108-R05942049-1.pdf: 12600404 bytes, checksum: 16849b95837c4de7bdf69223b6121661 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 VIII 中英對照表 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 電力線通訊系統 4 2.1 電力線通訊簡介 4 2.2 窄頻電力線通訊系統架構 6 2.2.1 IEEE P1901.2標準簡介 6 2.2.2 系統架構簡介 7 2.2.3 訊框結構簡介 8 2.2.4 攪亂器 9 2.2.5 里德-所羅門碼 10 2.2.6 迴旋碼 13 2.2.7 交錯器 17 2.2.8 差分相位偏移調變 19 2.3 正交分頻多工 21 2.3.1 正交分頻多工 21 2.3.2 保護間隔 23 2.3.3 空子載波 24 2.3.4 峰均功率比 25 2.4 窄頻電力線通道與雜訊模型 26 2.4.1 窄頻電力線通道模型 26 2.4.2 窄頻電力線雜訊模型 28 第三章 可適性頻移濾波器 34 3.1 頻移濾波器 34 3.2 遞迴最小平方演算法 37 3.3 遞迴最小平方頻移濾波器 41 第四章 循環穩態脈衝雜訊消除 43 4.1 循環穩態脈衝雜訊干擾問題 43 4.2 傳統脈衝雜訊消除演算法 44 4.3 循環穩態脈衝雜訊消除架構 46 4.4 循環頻率誤差影響 48 4.5 循環頻率誤差補償演算法 51 第五章 模擬結果 55 5.1 模擬參數設定 55 5.1.1 NB-PLC參數設定 55 5.1.2 循環穩態脈衝雜訊消除參數設定 56 5.2 模擬結果分析 58 第六章 結論與未來展望 72 6.1 結論 72 6.2 未來展望 73 參考文獻 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電力線通訊 | zh_TW |
| dc.subject | 循環穩態脈衝雜訊 | zh_TW |
| dc.subject | 循環頻率 | zh_TW |
| dc.subject | 頻移濾波器 | zh_TW |
| dc.subject | 正交分頻多工 | zh_TW |
| dc.subject | cyclostationary impulsive noise | en |
| dc.subject | cyclic frequency | en |
| dc.subject | FRESH filter | en |
| dc.subject | power line communication | en |
| dc.subject | OFDM | en |
| dc.title | 適用於窄頻電力線通訊之循環穩態脈衝雜訊消除 | zh_TW |
| dc.title | Cyclostationary Impulsive Noise Mitigation for Narrowband Power Line Communications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 錢膺仁 | |
| dc.contributor.oralexamcommittee | 陳逸民,賴坤財,陳家偉 | |
| dc.subject.keyword | 電力線通訊,循環穩態脈衝雜訊,循環頻率,頻移濾波器,正交分頻多工, | zh_TW |
| dc.subject.keyword | power line communication,cyclostationary impulsive noise,cyclic frequency,FRESH filter,OFDM, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU201903860 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 12.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
