請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73777完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林先和(Hsien-Ho Lin) | |
| dc.contributor.author | Cheng-Chieh Liu | en |
| dc.contributor.author | 劉澄杰 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:10:00Z | - |
| dc.date.available | 2020-08-26 | |
| dc.date.copyright | 2019-08-26 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-16 | |
| dc.identifier.citation | 1.World Health Oraniganization. Global tuberculosis report 2018 Geneva: World Health Organization; 2018 [cited 2018 Sep 18]. Available from: https://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-eng.pdf.
2.World Health Oraniganization. End TB brochure Geneva: World Health Organization; 2015. Available from: https://www.who.int/tb/End_TB_brochure.pdf?ua=1. 3.Narasimhan P, Wood J, Macintyre CR, Mathai D. Risk factors for tuberculosis. Pulmonary medicine. 2013;2013:828939-. Epub 2013/02/12. doi: 10.1155/2013/828939. PubMed PMID: 23476764. 4.Lonnroth K, Williams BG, Cegielski P, Dye C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol. 2010;39(1):149-55. Epub 2009/10/13. doi: 10.1093/ije/dyp308. PubMed PMID: 19820104. 5.Lin HH, Wu CY, Wang CH, Fu H, Lonnroth K, Chang YC, et al. Association of Obesity, Diabetes, and Risk of Tuberculosis: Two Population-Based Cohorts. Clin Infect Dis. 2018;66(5):699-705. Epub 2017/10/14. doi: 10.1093/cid/cix852. PubMed PMID: 29029077; PubMed Central PMCID: PMCPMC5850624. 6.Kim SJ, Ye S, Ha E, Chun EM. Association of body mass index with incident tuberculosis in Korea. PLoS One. 2018;13(4):e0195104. Epub 2018/04/19. doi: 10.1371/journal.pone.0195104. PubMed PMID: 29668698; PubMed Central PMCID: PMCPMC5906015. 7.Pealing L, Wing K, Mathur R, Prieto-Merino D, Smeeth L, Moore DA. Risk of tuberculosis in patients with diabetes: population based cohort study using the UK Clinical Practice Research Datalink. BMC Med. 2015;13:135. Epub 2015/06/07. doi: 10.1186/s12916-015-0381-9. PubMed PMID: 26048371; PubMed Central PMCID: PMCPMC4470065. 8.Leung CC, Lam TH, Chan WM, Yew WW, Ho KS, Leung G, et al. Lower risk of tuberculosis in obesity. Arch Intern Med. 2007;167(12):1297-304. Epub 2007/06/27. doi: 10.1001/archinte.167.12.1297. PubMed PMID: 17592104. 9.Yen YF, Hu HY, Lee YL, Ku PW, Lin IF, Chu D, et al. Obesity/overweight reduces the risk of active tuberculosis: a nationwide population-based cohort study in Taiwan. Int J Obes (Lond). 2017;41(6):971-5. Epub 2017/03/11. doi: 10.1038/ijo.2017.64. PubMed PMID: 28280271. 10.Roth J. Evolutionary Speculation About Tuberculosis and the Metabolic and Inflammatory Processes of Obesity. JAMA. 2009;301(24):2586-8. doi: 10.1001/jama.2009.930. 11.Dorhoi A, Kaufmann SH. Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol. 2014;26(3):203-9. Epub 2014/05/14. doi: 10.1016/j.smim.2014.04.003. PubMed PMID: 24819298. 12.Wallis RS. Tumour necrosis factor antagonists: structure, function, and tuberculosis risks. Lancet Infect Dis. 2008;8(10):601-11. Epub 2008/10/17. doi: 10.1016/s1473-3099(08)70227-5. PubMed PMID: 18922482. 13.Roca FJ, Ramakrishnan L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell. 2013;153(3):521-34. Epub 2013/04/16. doi: 10.1016/j.cell.2013.03.022. PubMed PMID: 23582643; PubMed Central PMCID: PMCPMC3790588. 14.Gupta N, Agrawal B, Kumar R. Controlling inflammation: a superior way to control TB. Immunotherapy. 2016;8(10):1157-61. Epub 2016/09/09. doi: 10.2217/imt-2016-0070. PubMed PMID: 27605065. 15.Gebremicael G, Amare Y, Challa F, Gebreegziabxier A, Medhin G, Wolde M, et al. Lipid Profile in Tuberculosis Patients with and without Human Immunodeficiency Virus Infection. Int J Chronic Dis. 2017;2017:3843291. Epub 2017/12/12. doi: 10.1155/2017/3843291. PubMed PMID: 29226217; PubMed Central PMCID: PMCPMC5687143. 16.Akpovi DC, Gbaguidi LHS, Anago En, Affolabi D, Dougnon TgV, Faihun F, et al. Tuberculosis treatment raises total cholesterol level and restores high density lipoprotein cholesterol (HDL-C) in patients with pulmonary tuberculosis. African Journal of Biotechnology. 2013;12(41):6019-24. doi: 10.5897/ajb2013.13073. 17.Deniz O, Gumus S, Yaman H, Ciftci F, Ors F, Cakir E, et al. Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clin Biochem. 2007;40(3-4):162-6. Epub 2007/01/16. doi: 10.1016/j.clinbiochem.2006.10.015. PubMed PMID: 17217941. 18.Martens GW, Arikan MC, Lee J, Ren F, Vallerskog T, Kornfeld H. Hypercholesterolemia impairs immunity to tuberculosis. Infect Immun. 2008;76(8):3464-72. Epub 2008/05/29. doi: 10.1128/IAI.00037-08. PubMed PMID: 18505807; PubMed Central PMCID: PMCPMC2493195. 19.Schäfer G, Guler R, Murray G, Brombacher F, Brown GD. The role of scavenger receptor B1 in infection with Mycobacterium tuberculosis in a murine model. PLoS One. 2009;4(12):e8448-e. doi: 10.1371/journal.pone.0008448. PubMed PMID: 20041149. 20.Martens GW, Vallerskog T, Kornfeld H. Hypercholesterolemic LDL receptor-deficient mice mount a neutrophilic response to tuberculosis despite the timely expression of protective immunity. J Leukoc Biol. 2012;91(6):849-57. Epub 2012/01/10. doi: 10.1189/jlb.0311164. PubMed PMID: 22227965; PubMed Central PMCID: PMCPMC3360472. 21.Soh AZ, Chee CB, Wang YT, Yuan JM, Koh WP. Dietary Cholesterol Increases the Risk whereas PUFAs Reduce the Risk of Active Tuberculosis in Singapore Chinese. J Nutr. 2016;146(5):1093-100. Epub 2016/04/15. doi: 10.3945/jn.115.228049. PubMed PMID: 27075903; PubMed Central PMCID: PMCPMC4841926. 22.Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama. 2001;285(19):2486-97. Epub 2001/05/23. PubMed PMID: 11368702. 23.Andreu J, Caceres J, Pallisa E, Martinez-Rodriguez M. Radiological manifestations of pulmonary tuberculosis. Eur J Radiol. 2004;51(2):139-49. Epub 2004/07/13. doi: 10.1016/j.ejrad.2004.03.009. PubMed PMID: 15246519. 24.World Health Oraniganization. Chest radiography in tuberculosis detection – summary of current WHO recommendations and guidance on programmatic approach Geneva2016. Available from: https://apps.who.int/iris/bitstream/handle/10665/252424/9789241511506-eng.pdf?sequence=1. 25.Lin HH, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 2007;4(1):e20. Epub 2007/01/18. doi: 10.1371/journal.pmed.0040020. PubMed PMID: 17227135; PubMed Central PMCID: PMCPMC1769410. 26.Lonnroth K, Williams BG, Stadlin S, Jaramillo E, Dye C. Alcohol use as a risk factor for tuberculosis - a systematic review. BMC Public Health. 2008;8:289. Epub 2008/08/16. doi: 10.1186/1471-2458-8-289. PubMed PMID: 18702821; PubMed Central PMCID: PMCPMC2533327. 27.Al-Efraij K, Mota L, Lunny C, Schachter M, Cook V, Johnston J. Risk of active tuberculosis in chronic kidney disease: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2015;19(12):1493-9. Epub 2015/11/29. doi: 10.5588/ijtld.15.0081. PubMed PMID: 26614191. 28.Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152. Epub 2008/07/18. doi: 10.1371/journal.pmed.0050152. PubMed PMID: 18630984; PubMed Central PMCID: PMCPMC2459204. 29.Lee PH, Fu H, Lee MR, Magee M, Lin HH. Tuberculosis and diabetes in low and moderate tuberculosis incidence countries. Int J Tuberc Lung Dis. 2018;22(1):7-16. Epub 2018/01/04. doi: 10.5588/ijtld.17.0329. PubMed PMID: 29297421. 30.Chen LI, Guh JY, Wu KD, Chen YM, Kuo MC, Hwang SJ, et al. Modification of diet in renal disease (MDRD) study and CKD epidemiology collaboration (CKD-EPI) equations for Taiwanese adults. PLoS One. 2014;9(6):e99645. Epub 2014/06/14. doi: 10.1371/journal.pone.0099645. PubMed PMID: 24927124; PubMed Central PMCID: PMCPMC4057229. 31.Institutes NHR. 2015 Taiwan Chronic Kidney Disease Clinical Guidelines Miaoli County, Taiwan: National Health Research Institutes; 2015 [cited 2015]. Available from: https://www.tsn.org.tw/UI/H/2015TCKDCG/2015%E5%8F%B0%E7%81%A3%E6%85%A2%E6%80%A7%E8%85%8E%E8%87%9F%E7%97%85%E8%87%A8%E5%BA%8A%E8%A8%BA%E7%99%82%E6%8C%87%E5%BC%95_%E5%9C%8B%E5%AE%B6%E8%A1%9B%E7%94%9F%E7%A0%94%E7%A9%B6%E9%99%A2.pdf. 32.Koeda Y, Tanaka F, Segawa T, Ohta M, Ohsawa M, Tanno K, et al. Comparison between urine albumin-to-creatinine ratio and urine protein dipstick testing for prevalence and ability to predict the risk for chronic kidney disease in the general population (Iwate-KENCO study): a prospective community-based cohort study. BMC Nephrol. 2016;17(1):46. Epub 2016/05/14. doi: 10.1186/s12882-016-0261-3. PubMed PMID: 27169575; PubMed Central PMCID: PMCPMC4865013. 33.Park JI, Baek H, Kim BR, Jung HH. Comparison of urine dipstick and albumin:creatinine ratio for chronic kidney disease screening: A population-based study. PLoS One. 2017;12(2):e0171106. Epub 2017/02/06. doi: 10.1371/journal.pone.0171106. PubMed PMID: 28151999; PubMed Central PMCID: PMCPMC5289498. 34.Lai CC, Lee MT, Lee SH, Hsu WT, Chang SS, Chen SC, et al. Statin treatment is associated with a decreased risk of active tuberculosis: an analysis of a nationally representative cohort. Thorax. 2016;71(7):646-51. Epub 2016/03/05. doi: 10.1136/thoraxjnl-2015-207052. PubMed PMID: 26941271. 35.Su VY, Su WJ, Yen YF, Pan SW, Chuang PH, Feng JY, et al. Statin Use Is Associated With a Lower Risk of TB. Chest. 2017;152(3):598-606. Epub 2017/05/10. doi: 10.1016/j.chest.2017.04.170. PubMed PMID: 28479115. 36.Chen C-C, Chiang C-Y, Pan S-C, Wang J-Y, Lin H-H. Health system delay among patients with tuberculosis in Taiwan: 2003-2010. BMC Infect Dis. 2015;15:491-. doi: 10.1186/s12879-015-1228-x. PubMed PMID: 26527404. 37.Chiang CY, Chang CT, Chang RE, Li CT, Huang RM. Patient and health system delays in the diagnosis and treatment of tuberculosis in Southern Taiwan. The International Journal of Tuberculosis and Lung Disease. 2005;9(9):1006-12. 38.Inoue M, Niki M, Ozeki Y, Nagi S, Chadeka EA, Yamaguchi T, et al. High-density lipoprotein suppresses tumor necrosis factor alpha production by mycobacteria-infected human macrophages. Scientific Reports. 2018;8(1):6736. doi: 10.1038/s41598-018-24233-1. 39.Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol. 2017;174(14):2194-208. Epub 2016/12/22. doi: 10.1111/bph.13694. PubMed PMID: 28002883; PubMed Central PMCID: PMCPMC5481656. 40.Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J. Mycobacterium tuberculosis Is Able To Accumulate and Utilize Cholesterol Journal of Bacteriology. 2009;191(21):6584. doi: 10.1128/JB.00488-09. 41.Ouellet H, Johnston JB, de Montellano PR. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol. 2011;19(11):530-9. Epub 2011/09/20. doi: 10.1016/j.tim.2011.07.009. PubMed PMID: 21924910; PubMed Central PMCID: PMCPMC3205253. 42.Wilburn KM, Fieweger RA, VanderVen BC. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis. 2018;76(2). Epub 2018/05/03. doi: 10.1093/femspd/fty021. PubMed PMID: 29718271; PubMed Central PMCID: PMCPMC6251666. 43.Leslie DS, Dascher CC, Cembrola K, Townes MA, Hava DL, Hugendubler LC, et al. Serum lipids regulate dendritic cell CD1 expression and function. Immunology. 2008;125(3):289-301. Epub 2008/04/28. doi: 10.1111/j.1365-2567.2008.02842.x. PubMed PMID: 18445008. 44.Leslie DS, Vincent MS, Spada FM, Das H, Sugita M, Morita CT, et al. CD1-mediated gamma/delta T cell maturation of dendritic cells. The Journal of experimental medicine. 2002;196(12):1575-84. Epub 2002/12/18. doi: 10.1084/jem.20021515. PubMed PMID: 12486100; PubMed Central PMCID: PMCPMC2196072. 45.Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res. 2018;191:29-44. Epub 2017/11/21. doi: 10.1016/j.trsl.2017.10.004. PubMed PMID: 29154757; PubMed Central PMCID: PMCPMC5776711. 46.Aibana O, Acharya X, Huang C-C, Becerra MC, Galea JT, Chiang SS, et al. Nutritional Status and Tuberculosis Risk in Adult and Pediatric Household Contacts. PLoS One. 2016;11(11):e0166333-e. doi: 10.1371/journal.pone.0166333. PubMed PMID: 27835678. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73777 | - |
| dc.description.abstract | 背景
血脂異常對於整個結核病的發病與進展仍不清楚;過去的動物模式和一篇流病研究都顯示膳食來源的膽固醇會增加肺結核的易感受性及發生率,實際上膳食來源的膽固醇大約只佔血清膽固醇的1/3,無法全面評估血脂異常對於整個活動性結核病的發病率影響。另一方面,史他汀一類血脂用藥在過去文獻中對於肺結核發病率具有保護的效果,但無法釐清整體的保護的效果是來自於史他汀一類血脂用藥或是血脂的保護。因此,本研究的目的為 (a) 探討四種常見血脂參數對於結核病的發病率影響 (b) 探討在結核病發病族群中四種常見血脂參數對於結核病的嚴重度影響(包含CXR 開洞與否以及塗片陽性的強弱) (c) 釐清血脂參數、史他汀一類血脂用藥和活動性結核病的相關性 方法 研究對象來自新北市社區成人健康篩檢資料 (n=118,097) , 血脂異常的切點參考ATP III之血脂分類標準以及成人代謝症候群診斷標準分為理想濃度、邊際危險濃度、高危險濃度。新發病的活動性結核病的個案定義是細菌學確認並通報至疾病管制署之結核病通報系統。第一,我們利用Kaplan-Meier 存活曲線觀察正常濃度、邊際濃度、高濃度血脂狀態對於結核病發生率的差異;Cox比例風險模式探討邊際和高濃度血脂狀態相對於正常濃度血脂狀態結核病發生率的風險比值,最後以spline 迴歸模式去觀察四種常見血脂參數與結核病風險的劑量效應關係。第二,我們使用單變項邏輯式迴歸去評估在確診結核病族群中,血脂參數與結核病的嚴重度的相關。第三 ,我們使用時間相依共變數調整追蹤期間史他汀用藥紀錄 結果 經過平均8年的追蹤,總共有429名結核病新發個案,發現高LDL-c (>160mg/dl)和高總膽固醇(>200mg/dl)與結核病發生率存在著反向相關,在Cox比例風險模式中,在調整了其他共變異項後,相較於正常血脂狀態,高LDL-c 族群的結核病風險比值為0.587 (95% CI: 0.417-0.828),高總膽固醇族群的結核病風險比值為0.623(95% CI: 0.450-0.861) 。我們更進一步針對排除條件進行敏感度分析以及在模式中調整追蹤期間史他汀用藥紀錄,高LDL-c (>160mg/dl)和高總膽固醇與結核病的反向相關仍無改變,呈現一致性 結果。 結論 高LDL-c和高總膽固醇的受試者罹患結核病的風險分別低於正常血脂42%和38%,但由於血脂狀態與結核病之間的相互作用是複雜的,需要更多研究進一步去了解血脂如何調節宿主對抗結核病。 | zh_TW |
| dc.description.abstract | Introduction
The impact of dyslipidemia on tuberculosis incidence and progression remains unclear and has potential implications contributed to TB control strategy. Previous studies from animal studies and one observational study revealed that dietary cholesterol may increase TB susceptibility and incidence rate. However, dietary cholesterol could not fully represent the association between serum lipid status and TB. On the other hand, the cholesterol-lowering drugs, statins, showed a protective effect on reducing TB incidence without differentiating whether the protective effect was derived from drugs or lipid profiles. Therefore, evaluating the serum lipid effect on TB incidence beyond the independence of statin effect would be essential. Methods We conducted a cohort study from a community-based health screening program in northern Taiwan from 2005 to 2008, including a total of 118,097 participants. Serum lipid profiles including triglycerides, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and total cholesterol were ascertained at baseline. The occurrence of active tuberculosis was confirmed from the National Tuberculosis Registry. First, Kaplan-Meier curves by different lipid profiles were produced to compare the time to TB. Next, Cox proportional hazards regression analyses to estimate the hazard ratios (HRs) between lipid profiles and active TB. Later, spline regression was utilized to investigate the dose-response relationship. Second, the crude analysis was conducted to assess the association between lipid profiles and severity of TB. Eventually, we adjusted follow-up statin as a time-varying covariate in cox-model. Results After a median follow-up of 8 years, 429 cases of confirmed TB occurred. An inverse association was observed between LDL-c, total cholesterol, and incidence of TB (Table 2). After adjusting for other potential covariates, high LDL-c group (>160mg/dl) compared with normal LDL-c group (<100mg/dl) was associated with a lower risk of active TB (adjusted HR: 0.587, 95% CI: 0.417-0.828 ). Similarly, High total cholesterol group (>240mg/dl) also had a lower risk of active TB, with adjusted HR of 0.623 ( 95% CI: 0.450-0.861 ). On the other hands, serum triglycerides and HDL-c were not associated with risk of active TB. With further sensitivity analysis on exclusion criteria and adjustment of the follow-up statin usage, high LDL-c (>160mg/dl) and high total cholesterol remain inverse association with TB, consistently. Conclusion In this community-based cohort study, elevated serum cholesterol level and high LDL-c were associated with a decreased risk of active tuberculosis. Limitations of the research included a single measurement of serum lipid at baseline and lack of further information on latent TB. Further analyses should aim to examine the interplay of statin treatment, lipid profiles, and risk of TB. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:10:00Z (GMT). No. of bitstreams: 1 ntu-108-R06849019-1.pdf: 2384651 bytes, checksum: 412b0ba45084a1dc784b849c7bcd1a0f (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgment ii 摘要 iii Abstract v Contents vii List of figures ix List of tables x List of appendixes xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Nutrition status and tuberculosis 1 1.3 Inflammation and tuberculosis 2 1.4 Lipid profile and tuberculosis 2 1.5 Research aim 3 Chapter 2 Methods 4 2.1 Study population 4 2.2 Baseline data lipid profiles collection 4 2.3 Definition of active TB 5 2.4 Determination of the degree of the radiological extent and smear positivity 5 2.5 Measurement of underlying diseases and medications other covariates 6 2.6 Statistical analysis 6 2.7 Adjustment of follow-up statin 8 2.8 Sensitivity analysis 8 2.9 Power analysis 8 Chapter 3 Result 9 3.1 Basic characteristics of the screening cohort population 9 3.2 Associations between blood lipids and the risk of incident TB 9 3.3 Dose-response curves within the Cox regression model 10 3.4 Subgroup analysis 11 3.5 Relationship between lipid profiles and radiological extent of 12 disease/ smear positivity among active TB patients 12 3.6 Model within adjustment of follow-up statin 12 3.7 Sensitivity analysis 12 Chapter 4 Discussion 13 4.1 Summary main finding 13 4.2 Previous studies of lipid profiles and TB 13 4.3 Biological plausibility 14 4.4 Study limitations 15 4.5 Conclusion 16 Reference 17 Tables 30 Appendix 42 | |
| dc.language.iso | en | |
| dc.subject | 血脂異常 | zh_TW |
| dc.subject | 劑量效應關係 | zh_TW |
| dc.subject | 結核病 | zh_TW |
| dc.subject | 時間相依共變數 | zh_TW |
| dc.subject | 世代追蹤研究 | zh_TW |
| dc.subject | 史他汀 | zh_TW |
| dc.subject | time-varying covariate | en |
| dc.subject | dyslipidemia | en |
| dc.subject | tuberculosis | en |
| dc.subject | dose-response relationship | en |
| dc.title | 探討血脂異常是否增加活動性肺結核風險:世代追蹤研究 | zh_TW |
| dc.title | Association between Serum Lipid Profiles and Risk of Active Tuberculosis: A Prospective Cohort Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王振源(Jann-Yuan Wang),張以承(Yi-Cheng Chang),方啟泰(Chi-tai Fang),黃彥棕(Yen-Tsung Huang) | |
| dc.subject.keyword | 結核病,血脂異常,史他汀,世代追蹤研究,劑量效應關係,時間相依共變數, | zh_TW |
| dc.subject.keyword | tuberculosis,dyslipidemia,dose-response relationship,time-varying covariate, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201903904 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
