Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73763
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor唐牧群(Muh-Chyun Tang)
dc.contributor.authorYa-Fang Chengen
dc.contributor.author鄭雅方zh_TW
dc.date.accessioned2021-06-17T08:09:41Z-
dc.date.available2022-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citationÅström, F. (2007). Changes in the LIS research front: Time‐sliced cocitation analyses of LIS journal articles, 1990–2004. Journal of the American Society for Information Science and Technology, 58(7), 947-957.
Bastian M., Heymann S., Jacomy M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.
Carolan, B. V. (2008). The structure of educational research: The role of multivocality in promotingcohesion in an article interlock network. Social Networks, 30(1), 69–82.
Darden, L., & Maull, N. (1977). Interfield theories. Philosophy of Science, 44(1), 43-64.
Geiger, N. (2017). The rise of behavioral economics: a quantitative assessment. Social Science History, 41(3), 555-583.
Heukelom, F. (2014). Behavioral economics : a history. New York, NY : Cambridge University Press.
Li, Wenye; Schuurmans, Dale (2011). Modular Community Detection in Networks. IJCAI Proceedings-International Joint Conference on Artificial Intelligence, 22 (1), 1366-1371. doi: 10.5591/978-1-57735-516-8/IJCAI11-231.
Liu, P., & Xia, H. (2015). Structure and evolution of co-authorship network in an interdisciplinary research field. Scientometrics, 103(1), 101-134.
Maliniak, D. & Powers, R. M.(2014) Citations and Intellectual Communities in the International Relations Literature. Paper Presented at the Annual Meeting of the International Studies Association, Toronto, March 26–29.
Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69(2), 213-238.
National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. (2005). Facilitating Interdisciplinary Research, Washington, D.C.: National Academies Press.
Porter, A. L., Roessner, J. D., Cohen, A. S., & Perreault, M. (2006). Interdisciplinary research : meaning, metrics and nurture. Research Evaluation, 15(3), 187-195.
Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719-745.
Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience. Scientometrics, 82(2), 263-287.
Rinia, E. J., Van Leeuwen, T. N., Bruins, E. E., Van Vuren, H. G., & Van Raan, A. F. (2002). Measuring knowledge transfer between fields of science. Scientometrics, 54(3), 347-362.
Salton, G. (1989). Automatic text processing. Reading, MA : Addison-Wesley.
Samson, A. (2014). An introduction to behavioral economics. The Behavioral Economics Guide 2014.
Stirling, A. (1998). On the economics and analysis of diversity. Science Policy Research Unit (SPRU), Electronic Working Papers Series, Paper, 28, 1-156.
Tang, M. C., Cheng, Y. J., & Chen, K. H. (2017). A longitudinal study of intellectual cohesion in digital humanities using bibliometric analyses. Scientometrics, 113(2), 985-1008.
Tang, M. C. (in press). Determining the critical thresholds for co-word network based on the theory of percolation transition: a case study in Buddhist studies.
Van Eck, N.J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.
Van Raan, A. (2000). The interdisciplinary nature of science : theoretical framework and bibliometric-empirical approach. In P. Weingart & N. Stehr (Eds.), Practising interdisciplinarity (pp. 66-78). Toronto: University of Toronto Press.
武杰(2004)。跨學科研究與非線性思維。北京:中國社會科學出版社。
張郁蔚(2009)。以直接引用、書目耦合及共同作者探討圖書資訊學跨學科之變遷(博士論文)。取自華藝線上圖書館。doi:10.6342/NTU.2009.00503。
陳光華、闕河嘉(2016)。庫博中文獨立語料庫分析工具之開發與應用。數位人文研究與技藝第六輯。臺北市:國立臺灣大學出版中心,285-313。
賀京同、那藝(2007)。傳承而非顛覆:從古典、新古典到行為經濟學。南開學報(哲學社會科學版),2007(2),122–130。
劉鳳良、周業安、陳彥斌(2008)。行為經濟學 理論與擴展。北京 : 中國經濟出版社。
黃慕萱、何蕙菩(2007)。圖書資訊學知識來源與知識擴散學科之研究。圖書資訊學刊,5(1/2),1-30。
黃慕萱、何蕙菩(2009)。圖書資訊學知識來源與知識擴散指標之研究。圖書館學與資訊科學,35(2),14-33。
鄭允人(2015)。數位人文學科知識整合趨勢之研究(碩士論文)。取自華藝線上圖書館。doi:10.6342/NTU.2015.02876。
薛求知、黃佩燕、魯直與張曉蓉(2003)。行為經濟學 理論與應用。上海 : 復旦大學出版社。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73763-
dc.description.abstract行為經濟學是經濟學發展歷史上的一次重大突破,早期是心理學結合行為經濟學的跨學科研究,從起源至今已發展超過半個世紀,行為經濟學研究的範疇與關注的主題一直以來不斷的在變動,但針對行為經濟學跨領域程度的研究卻非常少,故對於行為經濟學進行跨領域程度的研究有其必要性。
本研究收錄Web of Science 1967年至2018年的書目紀錄,以多樣性和凝聚性兩個方面著手,研究行為經濟學跨領域的程度,藉由關鍵字、領域分類的數量分布了解行為經濟學領域主題的組成與多樣性,以及共字、共著、書目耦合等書目計量方法繪製網絡圖,計算網絡凝聚指標,觀察行為經濟學書目網絡凝聚情形。
研究結果顯示:(一)行為經濟學以商學和心理學為主,逐漸包含更加多樣的領域,領域分類數量持續增加;(二)行為經濟學領域的跨領域多樣性逐漸提高,涵蓋的領域數量增加,領域分布平均程度也增加;(三)在共著網絡中可以看到行為經濟學者在近幾年凝聚成一個主要的大群體,顯示領域在近年應有整合的趨勢。另外,本文根據不同網絡採取不同的篩選方式,並提出新的指標代表性(representative)作為繪圖時網絡節點文字大小變化的依據,凸顯群體重要的節點,在方法上做出創新的嘗試。
zh_TW
dc.description.abstractBehavioral economics is a major breakthrough in the history of economic development. It is a interdisciplinary study of psychology combined with behavioral economics. It has been developed for more than half a century since its origin, and the scope and focus of behavioral economics research are always changing. There are very few studies on interdisciplinary of behavioral economics, so it is necessary to conduct interdisciplinary research on behavioral economics.
This study includes the bibliographic records of Web of Science from 1967 to 2018. It deals with two aspects of diversity and cohesion, and studies the degree of interdisciplinary of behavioral economics. The composition and diversity of behavioral economics is understood by the quantitative distribution of keywords and domain categories. The bibliographic measurement methods such as co-words, co-authoring, and bibliographic coupling are using in realized cohesive of the filed. Drawing network graphs and calculate network indicators to observe the behavioral economics bibliography network cohesion.
The results show that: (1) Behavioral economics is dominated by business and psychology, and gradually includes more diverse fields, and the number of domain classifications continues to increase; (2) The diversity in the field of behavioral economics is gradually increasing. The number of covering the fields has increased, and the average degree of domain distribution has also increased. (3) In the co-authored network, it can be seen that behavioral economists have condensed into a major large group in recent years, indicating that the field should have an integration trend in recent years. In addition, this paper adopts different filtering methods according to different networks, and proposes a new Indicator calls 'representative' as the basis for the difference of the text size of the network nodes when drawing the graph, highlighting the important nodes of the group, and making innovative attempts in the method.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:09:41Z (GMT). No. of bitstreams: 1
ntu-108-R04126018-1.pdf: 5054973 bytes, checksum: 5fb4d7b0fc905864cd6dd58b0228a582 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 i
Abstract ii
圖表目錄 v
第壹章 緒論 1
第一節 問題陳述 1
第二節 研究目的與研究問題 2
第三節 研究範圍與限制 3
第四節 名詞解釋 4
第貳章 文獻回顧 6
第一節 跨學科研究 6
第二節 行為經濟學概述 14
第參章 研究方法 17
第一節 研究步驟 17
第二節 資料處理與分析 30
第肆章 研究結果 37
第一節 文獻統計數據 38
第二節 跨領域多樣性分析 42
第三節 網絡凝聚性分析 60
第四節 綜合討論 91
第伍章 結論與建議 93
第一節 總結 93
第二節 未來展望 94
第陸章 參考資料 96
dc.language.isozh-TW
dc.subject行為經濟學zh_TW
dc.subject多樣性zh_TW
dc.subject跨領域研究zh_TW
dc.subject凝聚性zh_TW
dc.subjectBehavioral economicsen
dc.subjectinterdisciplinary researchen
dc.subjectdiversityen
dc.subjectcohesionen
dc.title以書目計量學方法探討行為經濟學跨領域程度之研究zh_TW
dc.titleExploring Interdisciplinary Trends in Behavioral Economics Based on Bibliometrics Methoden
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅思嘉(Szu-Chia Lo),林頌堅(Sung-Chien Lin)
dc.subject.keyword行為經濟學,跨領域研究,多樣性,凝聚性,zh_TW
dc.subject.keywordBehavioral economics,interdisciplinary research,diversity,cohesion,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201903884
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept圖書資訊學研究所zh_TW
顯示於系所單位:圖書資訊學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved