請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73762
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊顯(Chun-hsien Chen) | |
dc.contributor.author | Ming-Chi Cheng | en |
dc.contributor.author | 鄭名期 | zh_TW |
dc.date.accessioned | 2021-06-17T08:09:39Z | - |
dc.date.available | 2019-08-20 | |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2019-08-16 | |
dc.identifier.citation | 1. Carroll, R. L.; Gorman, C. B. Angew. Chem. Int. Edit. 2002, 41, 4379-4400.
2. Nazin, G. V.; Qiu, X. H.; Ho, W. Science 2003, 302, 77-81. 3. Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384-1389. 4. Galperin, M.; Ratner, M. A.; Nitzan, A.; Troisi, A. Science 2008, 319, 1056-1060. 5. Aradhya, S. V.; Venkataraman, L. Nat. Nanotechnol. 2013, 8, 399-410. 6. Metzger, R. M. Chem. Rev. 2015, 115, 5056-5115. 7. Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J. Nature 2000, 408, 67-69. 8. Zhou, X. S.; Liu, L.; Fortgang, P.; Lefevre, A. S.; Serra-Muns, A.; Raouafi, N.; Amatore, C.; Mao, B. W.; Maisonhaute, E.; Schollhorn, B. J. Am. Chem. Soc. 2011, 133, 7509-7516. 9. Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K. H.; Moresco, F.; Grill, L. J. Am. Chem. Soc. 2006, 128, 14446-14447. 10. Jia, C. C.; Wang, J. Y.; Yao, C. J.; Cao, Y.; Zhong, Y. W.; Liu, Z. R.; Liu, Z. F.; Guo, X. F. Angew. Chem. Int. Edit. 2013, 52, 8666-8670. 11. Jia, C. C.; Migliore, A.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y.; Liu, Z. R.; Zhang, G. Y.; Qu, D. H.; Tian, H.; Ratner, M. A.; Xu, H. Q.; Nitzan, A.; Guo, X. F. Science 2016, 352, 1443-1445. 12. Lee, Y. G.; Carsten, B.; Yu, L. Langmuir 2009, 25, 1495-1499. 13. Choi, S. H.; Kim, B.; Frisbie, C. D. Science 2008, 320, 1482-1486. 14. Yeganeh, S.; Galperin, M.; Ratner, M. A. J. Am. Chem. Soc. 2007, 129, 13313-13320. 15. Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277-283. 16. Diez-Perez, I.; Hihath, J.; Lee, Y.; Yu, L. P.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N. J. Nat. Chem. 2009, 1, 635-641. 17. Capozzi, B.; Xia, J. L.; Adak, O.; Dell, E. J.; Liu, Z. F.; Taylor, J. C.; Neaton, J. B.; Campos, L. M.; Venkataraman, L. Nat. Nanotechnol. 2015, 10, 522-527. 18. Albrecht, T.; Guckian, A.; Ulstrup, J.; Vos, J. G. Nano Lett. 2005, 5, 1451-1455. 19. Chae, D. H.; Berry, J. F.; Jung, S.; Cotton, F. A.; Murillo, C. A.; Yao, Z. Nano Lett. 2006, 6, 165-168. 20. Martinez-Blanco, J.; Nacci, C.; Erwin, S. C.; Kanisawa, K.; Locane, E.; Thomas, M.; von Oppen, F.; Brouwer, P. W.; Folsch, S. Nat. Phys. 2015, 11, 640-+. 21. Wang, C. C.; Lo, W. C.; Chou, C. C.; Lee, G. H.; Chen, J. M.; Peng, S. M. Inorg. Chem. 1998, 37, 4059-4065. 22. Peng, S. M.; Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K. J. Magn. Magn. Mater. 2000, 209, 80-83. 23. Liu, I. P. C.; Benard, M.; Hasanov, H.; Chen, I. W. P.; Tseng, W. H.; Fu, M. D.; Rohmer, M. M.; Chen, C. H.; Lee, G. H.; Peng, S. M. Chem. Eur. J. 2007, 13, 8667-8677. 24. Yang, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. J. Chem. Soc. Chem. Comm. 1994, 2377-2378. 25. Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M. Chem. Commun. 1996, 315-316. 26. Shieh, S. J.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M. Angew. Chem. Int. Edit. 1997, 36, 56-59. 27. Lai, S. Y.; Lin, T. W.; Chen, Y. H.; Wang, C. C.; Lee, G. H.; Yang, M. H.; Leung, M. K.; Peng, S. M. J. Am. Chem. Soc. 1999, 121, 250-251. 28. Yeh, C. Y.; Chiang, Y. L.; Lee, G. H.; Peng, S. M. Inorg. Chem. 2002, 41, 4096-4098. 29. Shih, K. N.; Huang, M. J.; Lu, H. C.; Fu, M. D.; Kuo, C. K.; Huang, G. C.; Lee, G. H.; Chen, C. H.; Peng, S. M. Chem. Commun. 2010, 46, 1338-1340. 30. Hua, S. A.; Liu, I. P. C.; Hasanov, H.; Huang, G. C.; Ismayilov, R. H.; Chiu, C. L.; Yeh, C. Y.; Lee, G. H.; Peng, S. M. Dalton Trans. 2010, 39, 3890-3896. 31. Hua, S. A.; Huang, G. C.; Liu, I. P. C.; Kuo, J. H.; Jiang, C. H.; Chiu, C. L.; Yeh, C. Y.; Lee, G. H.; Peng, S. M. Chem. Commun. 2010, 46, 5018-5020. 32. Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Benard, M.; Peng, S. M. Angew. Chem. Int. Edit. 2011, 50, 2045-2048. 33. Wang, W. Z.; Wu, Y.; Ismayilov, R. H.; Kuo, J. H.; Yeh, C. Y.; Lee, H. W.; Fu, M. D.; Chen, C. H.; Lee, G. H.; Peng, S. M. Dalton Trans. 2014, 43, 6229-6235. 34. Huang, M. J.; Hua, S. A.; Fu, M. D.; Huang, G. C.; Yin, C. X.; Ko, C. H.; Kuo, C. K.; Hsu, C. H.; Lee, G. H.; Ho, K. Y.; Wang, C. H.; Yang, Y. W.; Chen, I. C.; Peng, S. M.; Chen, C. H. Chem. Eur. J. 2014, 20, 4526-4531. 35. Hua, S. A.; Cheng, M. C.; Chen, C. H.; Peng, S. M. Eur. J. Inorg. Chem. 2015, 2015, 2510-2523. 36. Chen, P. J.; Sigrist, M.; Horng, E. C.; Lin, G. M.; Lee, G. H.; Chen, C. H.; Peng, S. M. Chem. Commun. 2017, 53, 4673-4676. 37. Lin, S. Y.; Chen, I. W. P.; Chen, C. H.; Hsieh, M. H.; Yeh, C. Y.; Lin, T. W.; Chen, Y. H.; Peng, S. M. J. Phys. Chem. B 2004, 108, 959-964. 38. Chen, I.-W. P.; Fu, M.-D.; Tseng, W.-H.; Yu, J.-Y.; Wu, S.-H.; Ku, C.-J.; Chen, C.-h.; Peng, S.-M. Angew. Chem. Int. Edit. 2006, 45, 5814-5818. 39. Ting, T. C.; Hsu, L. Y.; Huang, M. J.; Horng, E. C.; Lu, H. C.; Hsu, C. H.; Jiang, C. H.; Jin, B. Y.; Peng, S. M.; Chen, C. H. Angew. Chem. Int. Edit. 2015, 54, 15734-15738. 40. Wu, L. P.; Field, P.; Morrissey, T.; Murphy, C.; Nagle, P.; Hathaway, B.; Simmons, C.; Thornton, P. J. Chem. Soc. Dalton. 1990, 3835-3840. 41. Pyrka, G. J.; Elmekki, M.; Pinkerton, A. A. J. Chem. Soc. Chem. Comm. 1991, 84-85. 42. Aduldecha, S.; Hathaway, B. J. Chem. Soc. Dalton. 1991, 993-998. 43. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. P. Inorg. Chem. 2003, 42, 2418-2427. 44. Cotton, F. A.; Daniels, L. M.; Jordan, G. T. Chem. Commun. 1997, 421-422. 45. Liu, P.-C. New Generations of Metal Strings: Synthesis, Structure, Magnetism, Spectroscopy and Theoretical Analysis of the Mixed-Valence [Ni5]8+ Compound and Two Mixed-Metal (Cu-Pd-Cu and Cu-Pt-Cu) Complexes. Ph.D. Dissertation, National Taiwan University, Taipei, 2008. 46. Ting, T. C. Tuning the Single-molecule Conductance of Metal String Complexes by Electrochemical Gating. Master Thesis, National Taiwan University, Taipei, 2015. 47. Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Mague, J. T.; Wood, J. S.; Harris, C. B.; Robinson, W. R.; Lippard, S. J. Science 1964, 145, 1305-1307. 48. Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Robinson, W. R. Inorg. Chem. 1965, 4, 326-330. 49. Cotton, F. A., Advanced Inorganic Chemistry. Wiley: New York, 1999. 50. Berry, J. F.; Cotton, F. A.; Lei, P.; Lu, T. B.; Murillo, C. A. Inorg. Chem. 2003, 42, 3534-3539. 51. Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Phys. Rev. Lett. 1982, 49, 57-61. 52. Chen, C. J., Introduction to scanning tunneling microscopy. Oxford University Press: New York, 1993. 53. Schematic View of an STM. http://imgarcade.com/1/first-scanning-tunneling-microscope (accessed Apr. 5, 2017). 54. Leach, R.; Weckenmann, A. C., J. Hartmann, W. Surf. Topogr. Metrol. Prop. 2014, 2, 035001. 55. Bardeen, J. Phys. Rev. Lett. 1961, 6, 57-59. 56. Lieber, C. M.; Liu, J.; Sheehan, P. E. Angew. Chem. Int. Edit. 1996, 35, 687-704. 57. Tersoff, J.; Hamann, D. R. Phys. Rev. Lett. 1983, 50, 1998-2001. 58. Nie, H.-Y. The University of Western Ontario. Surface Science Western. Scanning Probe Techniques. http://publish.uwo.ca/~hnie/spmman.html (accessed Aug 30, 2015). 59. Selloni, A.; Carnevali, P.; Tosatti, E.; Chen, C. D. Phys. Rev. B 1985, 31, 2602-2605. 60. Feenstra, R. M.; Thompson, W. A.; Fein, A. P. Phys. Rev. Lett. 1986, 56, 608-611. 61. Ternes, M. Scanning tunneling spectroscopy at the single atom scale. Ph.D. Dissertation, École Polytechnique Fédérale de Lausanne, Lausanne, 2006. 62. Schematic of STM Measurement Types. http://hoffman.physics.harvard.edu/research/STMmeas.php (accessed May 14, 2018). 63. Schwarz, F.; Kastlunger, G.; Lissel, F.; Egler-Lucas, C.; Semenov, S. N.; Venkatesan, K.; Berke, H.; Stadler, R.; Lortscher, E. Nat. Nanotechnol. 2016, 11, 170-176. 64. Ohnishi, H.; Kondo, Y.; Takayanagi, K. Nature 1998, 395, 780-783. 65. Xu, B. Q.; Tao, N. J. J. Science 2003, 301, 1221-1223. 66. Xu, B. Q.; Xiao, X. Y.; Tao, N. J. J. Am. Chem. Soc. 2003, 125, 16164-16165. 67. Frei, M.; Aradhya, S. V.; Koentopp, M.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2011, 11, 1518-1523. 68. Wold, D. J.; Frisbie, C. D. J. Am. Chem. Soc. 2001, 123, 5549-5556. 69. Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Hobenreich, H.; Schiffrin, D. J.; Nichols, R. J. J. Am. Chem. Soc. 2003, 125, 15294-15295. 70. Nichols, R. J.; Haiss, W.; Higgins, S. J.; Leary, E.; Martin, S.; Bethell, D. Phys. Chem. Chem. Phys. 2010, 12, 2801-2815. 71. Haiss, W.; Nichols, R. J.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Schiffrin, D. J. Phys. Chem. Chem. Phys. 2004, 6, 4330-4337. 72. Lafferentz, L.; Ample, F.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Science 2009, 323, 1193-1197. 73. Magoga, M.; Joachim, C. Phys. Rev. B 1997, 56, 4722-4729. 74. Jasper-Tonnies, T.; Garcia-Lekue, A.; Frederiksen, T.; Ulrich, S.; Herges, R.; Berndt, R. Phys. Rev. Lett. 2017, 119. 75. Reecht, G.; Lotze, C.; Sysoiev, D.; Huhn, T.; Franke, K. J. ACS Nano. 2016, 10, 10555-10562. 76. Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V. B.; Frisbie, C. D. Adv. Mater. 2003, 15, 1881-1890. 77. Karthauser, S. J. Phys.:Condens. Matter 2011, 23, 013001. 78. Hines, T.; Diez-Perez, I.; Hihath, J.; Liu, H.; Wang, Z.-S.; Zhao, J.; Zhou, G.; Müllen, K.; Tao, N. J. Am. Chem. Soc. 2010, 132, 11658-11664. 79. Luo, L. A.; Choi, S. H.; Frisbie, C. D. Chem. Mater. 2011, 23, 631-645. 80. Luo, L.; Benameur, A.; Brignou, P.; Choi, S. H.; Rigaut, S.; Frisbie, C. D. J. Phys. Chem. C 2011, 115, 19955-19961. 81. Goldsmith, R. H.; DeLeon, O.; Wilson, T. M.; Finkelstein-Shapiro, D.; Ratner, M. A.; Wasielewski, M. R. J Phys Chem A 2008, 112, 4410-4414. 82. Stencel, J. M.; Noland, D. M.; Bradley, E. B.; Frenzel, C. A. Rev. Sci. Instrum. 1978, 49, 1163-1165. 83. Model 7265 DSP Lock-in Amplifier. https://www.photonicsolutions.co.uk/upfiles/7265LockInAmpV7Web.pdf (accessed May 16, 2018). 84. Tewari, S.; Bastiaans, K. M.; Allan, M. P.; van Ruitenbeek, J. M. Beilstein J. Nanotech. 2017, 8, 2389-2395. 85. Muller, A. D.; Muller, F.; Hietschold, M.; Demming, F.; Jersch, J.; Dickmann, K. Rev. Sci. Instrum. 1999, 70, 3970-3972. 86. Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Y.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Y.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V. Sci. Rep. 2014, 4, 3742. 87. Hockett, L. A.; Creager, S. E. Rev. Sci. Instrum. 1993, 64, 263-264. 88. Pierson, H. O., Handbook of carbon, graphite, diamond, and fullerenes : properties, processing, and applications. Noyes Publications: Park Ridge, N.J., 1993. 89. Ooi, N.; Rairkar, A.; Adams, J. B. Carbon 2006, 44, 231-242. 90. Koch, R.; Yang, J. S. J. Appl. Phys. 2005, 97, 104321. 91. Voigtlander, B.; Meyer, G.; Amer, N. M. Phys. Rev. B 1991, 44, 10354-10357. 92. Goss, C. A.; Brumfield, J. C.; Irene, E. A.; Murray, R. W. Langmuir 1993, 9, 2986-2994. 93. Davis, L. C.; Everson, M. P.; Jaklevic, R. C.; Shen, W. D. Phys. Rev. B 1991, 43, 3821-3830. 94. Maksymovych, P.; Sorescu, D. C.; Yates, J. T. Phys. Rev. Lett. 2006, 97, 146103. 95. Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216-1218. 96. Maksymovych, P.; Sorescu, D. C.; Dougherty, D.; Yates, J. T. J. Phys. Chem. B 2005, 109, 22463-22468. 97. Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62-64. 98. Fu, M. D.; Chen, W. P.; Lu, H. C.; Kuo, C. T.; Tseng, W. H.; Chen, C. H. J. Phys. Chem. C 2007, 111, 11450-11455. 99. Barth, J. V.; Brune, H.; Ertl, G.; Behm, R. J. Phys. Rev. B 1990, 42, 9307-9318. 100. Wang, Y.; Hush, N. S.; Reimers, J. R. Phys. Rev. B 2007, 75, 233416. 101. Seitsonen, A. P. Surf. Sci. 2016, 643, 150-155. 102. Takeuchi, N.; Chan, C. T.; Ho, K. M. Phys. Rev. B 1991, 43, 13899-13906. 103. Chen, W.; Madhavan, V.; Jamneala, T.; Crommie, M. F. Phys. Rev. Lett. 1998, 80, 1469-1472. 104. Li, X.; Gewirth, A. A. J. Am. Chem. Soc. 2003, 125, 11674-11683. 105. Jasper-Tonnies, T.; Gruber, M.; Karan, S.; Jacob, H.; Tuczek, F.; Berndt, R. J. Phys. Chem. Lett. 2017, 8, 1569-1573. 106. Schwarz, F.; Kastlunger, G.; Lissel, F.; Riel, H.; Venkatesan, K.; Berke, H.; Stadler, R.; Lortscher, E. Nano Lett. 2014, 14, 5932-5940. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73762 | - |
dc.description.abstract | 本論文使用超高真空掃描穿隧顯微術(ultrahigh-vacuum scanning tunneling microscopy, UHV-STM),研究Au(111)單晶表面上的長鏈狀十ㄧ核鎳金屬串錯合物[Ni11(bnatpya)4(NCS)2](PF6)4分子結構與單分子電性表現。Au(111)在真空腔體內退火處理產生表面重排結構(reconstruction)。十一核鎳金屬串分子則溶於甲醇中滴至Au(111)表面上。在78 K的UHV-STM的實驗環境中,觀察金屬串分子在表面上的STM影像結構,可發現分子呈現橢圓狀電子雲結構,由縱寬分析得到單分子長寬尺寸與高度資訊。使用掃描穿隧能譜(scanning tunneling spectroscopy, STS)分析金屬串分子的dI/dV能譜,顯示分子在Au(111)上的能態密度(density of state)隨能量呈現特徵峰分佈,除了金表面態(surface state)因分子耦合產生位移以外,在-1.20 eV、+0.82 eV處較高的能態密度,對照紫外線-可見光吸收光譜(UV-visible spectroscopy),可指認此能量差為分子在能態密度波峰的HOMO-LUMO能階間隔。利用STM探針與分子末端硫氰基接觸,可使分子抬離表面,形成頭基接合電極的單分子電路。執行分子抬升同時記錄導電值對距離的關係(G-Z圖),推算金屬串單分子導電值。量測十一核金屬串錯合物的單分子導電值相較於室溫量測結果稍高,對於分子導電值在變溫環境下的熱活化傳遞機制預測有差異,其中設定偏壓與末端硫氰基與電極的耦合作用力等效應,對於解釋量測導電值是重要參考。 | zh_TW |
dc.description.abstract | This thesis presents the molecular structures and the single-molecular conductivity of a long-chain-shaped polynuclear metal string complex [Ni11(bnatpya)4(NCS)2]4+ (Ni11) on the single crystal surface of Au(111) by ultrahigh-vacuum scanning tunneling microscopy (UHV-STM). The Au(111) surface was prepared by annealing to generate the reconstruction. Ni11 was dissolved in methanol and deposited on Au(111). At 78 K UHV-STM, the STM images showed oblate-shaped structures of Ni11 on Au(111). From the height profiles, single-molecular size of Ni11 could be obtained from the images of topography. Scanning tunneling spectroscopy (STS) indicated density of states (DOS) of Ni11 by dI/dV spectra exhibiting the distributions of peaks at -1.20 eV and +0.82 eV, excluding the shifting peak of gold surface state. Compared with ultraviolet-visible spectroscopy, the energy difference acquired from dI/dV spectra could be identified with aligned energy of HOMO-LUMO gap. The STM probe was able to contact the ending thiocyanate group of Ni11, which would contribute to the single-molecular circuit while the Ni11 molecules were lifted from the surface. Conductance-to-distance graph was measured in the process of lifting to calculate the single-molecular conductance. The measured conductance at 78 K was slightly higher than the previous results at room temperature. Despite the discrepancy from heat-dependent mechanism of electron tunneling, this is an important reference to further discuss on molecular conductance if considering the effects of setpoint bias as well as coupling interactions between ending thiocyanate group and the electrodes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:09:39Z (GMT). No. of bitstreams: 1 ntu-107-R05223123-1.pdf: 5280832 bytes, checksum: 0816297e8a977828483418586812182b (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii 關鍵詞 iii ABSTRACT iv KEYWORDS iv 目錄 v 圖目錄 viii 表目錄 x 第1章 緒論 11 1.1. 研究動機 11 1.2. 金屬串錯合物 12 1.2.1. 金屬-金屬鍵結理論 14 1.2.2. 直線型多核過渡金屬鍵結理論 15 1.2.3. 金屬串電性比較 16 1.3. 掃描穿隧顯微術 20 1.3.1. 穿隧電流 23 1.3.2. 回饋電路 26 1.3.3. 雜訊 28 1.4. 掃描穿隧能譜原理 28 1.4.1. 鎖相技術 30 1.4.2. dI/dV圖 31 1.5. 單分子電性量測方法 32 1.5.1. 掃描式探針顯微術破裂接合法 33 1.5.2. I(s)與I(t)技術 36 1.5.3. 單分子接觸導電值 38 1.6. 導電機制 43 1.6.1. 電子傳遞機制 44 1.6.2. 溫度對電子傳遞機制轉換 46 第2章 實驗部分 50 2.1. 藥品及耗材 50 2.2. 儀器與設備 51 2.2.1. 超高真空腔體 53 2.2.2. 高溫烘烤 56 2.2.3. STM電子控制系統 57 2.2.4. 鎖相放大器 57 2.3. 實驗步驟 58 2.3.1. 探針製備 59 2.3.2. 探針修復 60 2.3.3. 樣品配製 61 第3章 結果與討論 62 3.1. 儀器效能 62 3.1.1. 濾除雜訊 63 3.1.2. STM掃描頭校正 63 3.1.3. 鎖相放大器校正 65 3.2. Au(111) 66 3.2.1. Au(111)表面重排 67 3.2.2. Au(111)電性結構 68 3.3. 十一核鎳金屬串/Au(111) 69 3.3.1. 十一核鎳金屬串表面結構 69 3.3.2. 十一核鎳金屬串電性結構 72 3.4. 十一核鎳金屬串導電機制 73 3.4.1. G-Z圖分析單分子導電值 74 3.4.2. 溫度相關電子傳遞機制分析 78 第4章 結論 80 參考文獻 81 附錄 87 附錄一、十一核鎳金屬串/Au(111)表面結構影像 87 附錄二、十一核鎳金屬串分子之紫外線-可見光吸收光譜 88 | |
dc.language.iso | zh-TW | |
dc.title | 掃描式穿隧顯微術的十一核鎳金屬串錯合物電性結構與電子傳遞機制之研究 | zh_TW |
dc.title | A UHV-STM/STS Study of Electronic Structures and Electron Transports of [Ni11(bnatpya)4(NCS)2](PF6)4 | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳以文(I-Wen Chen),詹揚翔(Yang-Hsiang Chan) | |
dc.subject.keyword | 掃描穿隧顯微術,掃描穿隧能譜,Au(111),多核金屬串錯合物,能態密度,單分子導電值, | zh_TW |
dc.subject.keyword | Scanning Tunneling Microscopy,Scanning Tunneling Spectroscopy,Au(111),Polynuclear Metallic String Complex,Density of State,Single-molecular Conductance, | en |
dc.relation.page | 88 | |
dc.identifier.doi | 10.6342/NTU201804117 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 5.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。